login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014205 (1/12)*(n+5)*(n+1)*n^2. 3
0, 1, 7, 24, 60, 125, 231, 392, 624, 945, 1375, 1936, 2652, 3549, 4655, 6000, 7616, 9537, 11799, 14440, 17500, 21021, 25047, 29624, 34800, 40625, 47151, 54432, 62524, 71485, 81375, 92256, 104192, 117249, 131495, 147000, 163836, 182077, 201799, 223080, 246000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Partial sums of A084990. - Arkadiusz Wesolowski, Jan 25 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).

FORMULA

a(n) = 2*C(n+3,4) - C(n+1,2). - Zerinvary Lajos, May 02 2007

G.f.: x*(x^2-2*x-1)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009

a(0)=0, a(1)=1, a(2)=7, a(3)=24, a(4)=60, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)- 5*a(n-4)+a(n-5). - Harvey P. Dale, Aug 10 2014

MAPLE

seq(2*binomial(n+3, 4)-binomial(n+1, 2), n=0..32); # Zerinvary Lajos, May 02 2007

MATHEMATICA

Table[((n+5)(n+1)n^2)/12, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 7, 24, 60}, 50] (* Harvey P. Dale, Aug 10 2014 *)

CoefficientList[Series[x (x^2 - 2 x - 1)/(x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 11 2014 *)

PROG

(MAGMA) [(1/12)*(n+5)*(n+1)*n^2: n in [0..50]]; // Vincenzo Librandi, Aug 11 2014

CROSSREFS

Cf. A084990.

Sequence in context: A024205 A008779 A062449 * A002969 A029585 A114291

Adjacent sequences:  A014202 A014203 A014204 * A014206 A014207 A014208

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 04:49 EDT 2021. Contains 343030 sequences. (Running on oeis4.)