|
|
A008779
|
|
Number of n-dimensional partitions of 5.
|
|
5
|
|
|
1, 7, 24, 59, 120, 216, 357, 554, 819, 1165, 1606, 2157, 2834, 3654, 4635, 5796, 7157, 8739, 10564, 12655, 15036, 17732, 20769, 24174, 27975, 32201, 36882, 42049, 47734, 53970, 60791, 68232, 76329, 85119, 94640, 104931, 116032, 127984, 140829, 154610, 169371
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) = number of (n+8)-bit binary sequences with exactly 8 1's none of which is isolated. - David Callan, Jul 15 2004
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Binomial transform of [1,6,11,7,1,0,0,0,...], the 5th row of A116672. - R. J. Mathar, Jul 18 2017
|
|
REFERENCES
|
G. E. Andrews, The Theory of Partitions, Add.-Wes. '76, p. 190.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 +2*x -x^2 -x^3)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = (n+1)*(n^3 + 21*n^2 + 38*n + 24)/24. - M. F. Hasler, Sep 15 2009
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). - Vincenzo Librandi, May 21 2015
E.g.f.: (24 + 144*x + 132*x^2 + 28*x^3 + x^4)*exp(x)/24. - G. C. Greubel, Sep 11 2019
|
|
MAPLE
|
seq(1+6*n+11*binomial(n, 2)+7*binomial(n, 3)+binomial(n, 4), n=0..45);
|
|
MATHEMATICA
|
CoefficientList[Series[(1+2*x-x^2-x^3)/(1-x)^5, {x, 0, 45}], x] (* Vincenzo Librandi, May 21 2015 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 7, 24, 59, 120}, 46] (* G. C. Greubel, Sep 11 2019 *)
|
|
PROG
|
(Magma) [(n+1)*(n^3+21*n^2+38*n+24)/24: n in [0..45]] /* or */ I:=[1, 7, 24, 59, 120]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, May 21 2015
(PARI) Vec((-1+x^3+x^2-2*x)/(x-1)^5 + O(x^45)) \\ Altug Alkan, Jan 07 2016
(Sage) [(n+1)*(n^3 + 21*n^2 + 38*n + 24)/24 for n in (0..45)] # G. C. Greubel, Sep 11 2019
(GAP) List([0..45], n-> (n+1)*(n^3 + 21*n^2 + 38*n + 24)/24); # G. C. Greubel, Sep 11 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|