login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197649
a(n) = Sum_{k=0..n} k*Fibonacci(2*k).
4
0, 1, 7, 31, 115, 390, 1254, 3893, 11789, 35045, 102695, 297516, 853932, 2432041, 6881395, 19361995, 54214939, 151164018, 419910354, 1162585565, 3209268665, 8835468881, 24266461007, 66501634776, 181882282200, 496539007825, 1353272290399, 3682496714743
OFFSET
0,3
COMMENTS
There are only a small number of Fibonacci identities that can be solved for n. Some of these are
1. n = (-F(4*n) + 5*Sum_{k=1..n} F(2*k-1)^2)/2 (Vajda #95).
2. n = (F(n+3) - 2 + Sum_{k=0..n} k*F(k))/F(n+2). (A104286)
3. n = (a(n) + F(2*n))/F(2*n+1).
4. n = F(n+4) - 3 - Sum_{k=0..1} (F(k+2) - 1). (A001924)
n can also be expressed in terms of phi=(1+sqrt(5))/2:
5. n = floor(n*phi^3) - floor(2*n*phi).
6. n = (floor(2*n*phi^2) - floor(2*n*phi))/2.
LINKS
Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
E. Pérez Herrero, A small Fibonacci sum, Psychedelic Geometry Blogspot
FORMULA
a(n) = n*F(2*n+1) - F(2*n), where F(n)= Fibonacci(n).
a(n) = ((F(2*n+1)*((n-1)*h(n-1) - (n-1)*h(n-2)) - h(n)*F(2*n))/h(n), n > 2, where h(n) is the n-th harmonic number.
From R. J. Mathar, Oct 17 2011: (Start)
G.f.: x*(1+x) / ( (x^2-3*x+1)^2 ).
a(n) = A001871(n-1) + A001871(n-2). (End)
a(n) ~ c*n*(3 + sqrt(5))^n*2^(-n), where c = (5 + sqrt(5))/10. - Stefano Spezia, Mar 29 2022
MAPLE
a:=n->sum(k*fibonacci(2*k), n= 0..n):seq(a(n), n=0..25);
MATHEMATICA
Table[Sum[k*Fibonacci[2*k], {k, 0, n}], {n, 0, 50}] (* T. D. Noe, Oct 17 2011 *)
CROSSREFS
Cf. A023619 (inverse binomial transform).
Sequence in context: A364635 A097786 A350498 * A006458 A091344 A032197
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, Oct 16 2011
EXTENSIONS
Identity 4 added by Gary Detlefs, Dec 22 2012
STATUS
approved