

A197652


Numbers that are congruent to 0 or 1 mod 10.


6



0, 1, 10, 11, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 110, 111, 120, 121, 130, 131, 140, 141, 150, 151, 160, 161, 170, 171, 180, 181, 190, 191, 200, 201, 210, 211, 220, 221, 230, 231, 240, 241, 250, 251, 260, 261, 270, 271
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

From Wesley Ivan Hurt, Sep 26 2015: (Start)
Numbers with last digit 0 or 1.
Complement of (A260181 Union A262389). (End)
Numbers k such that floor(k/2) = 5*floor(k/10).  Bruno Berselli, Oct 05 2017


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,1).


FORMULA

a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1 and b(k) = 5*2^k = A020714(k) for k>0.
From Zak Seidov, Oct 20 2011: (Start)
a(n) = a(n2)+10.
a(n) = 5*n72*(1)^n. (End)
From Vincenzo Librandi, Jul 11 2012: (Start)
G.f.: x^2*(1+9*x)/((1+x)*(1x)^2).
a(n) = a(n1) + a(n2)  a(n3) for n>3. (End)


MAPLE

A197652:=n>5*n72*(1)^n: seq(A197652(n), n=1..100); # Wesley Ivan Hurt, Sep 26 2015


MATHEMATICA

CoefficientList[Series[x*(1+9*x)/((1+x)*(1x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 11 2012 *)


PROG

(PARI) a(n)=n\2*10+n%2*99 \\ Charles R Greathouse IV, Oct 25 2011
(MAGMA) [5*n72*(1)^n: n in [1..60]]; // Vincenzo Librandi, Jul 11 2012


CROSSREFS

Cf. A020714, A030308, A260181, A262389.
Sequence in context: A165265 A329818 A329447 * A261909 A325483 A235202
Adjacent sequences: A197649 A197650 A197651 * A197653 A197654 A197655


KEYWORD

nonn,easy


AUTHOR

Philippe Deléham, Oct 16 2011


STATUS

approved



