login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197652
Numbers that are congruent to 0 or 1 mod 10.
6
0, 1, 10, 11, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 110, 111, 120, 121, 130, 131, 140, 141, 150, 151, 160, 161, 170, 171, 180, 181, 190, 191, 200, 201, 210, 211, 220, 221, 230, 231, 240, 241, 250, 251, 260, 261, 270, 271
OFFSET
1,3
COMMENTS
From Wesley Ivan Hurt, Sep 26 2015: (Start)
Numbers with last digit 0 or 1.
Complement of (A260181 Union A262389). (End)
Numbers k such that floor(k/2) = 5*floor(k/10). - Bruno Berselli, Oct 05 2017
FORMULA
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1 and b(k) = 5*2^k = A020714(k) for k>0.
From Zak Seidov, Oct 20 2011: (Start)
a(n) = a(n-2) + 10.
a(n) = 5*n - 7 - 2*(-1)^n. (End)
From Vincenzo Librandi, Jul 11 2012: (Start)
G.f.: x^2*(1+9*x)/((1+x)*(1-x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
E.g.f.: 9 + (5*x - 7)*exp(x) - 2*exp(-x). - David Lovler, Sep 03 2022
MAPLE
A197652:=n->5*n-7-2*(-1)^n: seq(A197652(n), n=1..100); # Wesley Ivan Hurt, Sep 26 2015
MATHEMATICA
CoefficientList[Series[x*(1+9*x)/((1+x)*(1-x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 11 2012 *)
PROG
(PARI) a(n)=n\2*10+n%2*9-9 \\ Charles R Greathouse IV, Oct 25 2011
(Magma) [5*n-7-2*(-1)^n: n in [1..60]]; // Vincenzo Librandi, Jul 11 2012
(Python)
def A197652(n): return 5*n-(5 if n&1 else 9) # Chai Wah Wu, Oct 29 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Oct 16 2011
STATUS
approved