Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Oct 29 2024 14:41:08
%S 0,1,10,11,20,21,30,31,40,41,50,51,60,61,70,71,80,81,90,91,100,101,
%T 110,111,120,121,130,131,140,141,150,151,160,161,170,171,180,181,190,
%U 191,200,201,210,211,220,221,230,231,240,241,250,251,260,261,270,271
%N Numbers that are congruent to 0 or 1 mod 10.
%C From _Wesley Ivan Hurt_, Sep 26 2015: (Start)
%C Numbers with last digit 0 or 1.
%C Complement of (A260181 Union A262389). (End)
%C Numbers k such that floor(k/2) = 5*floor(k/10). - _Bruno Berselli_, Oct 05 2017
%H Vincenzo Librandi, <a href="/A197652/b197652.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1 and b(k) = 5*2^k = A020714(k) for k>0.
%F From _Zak Seidov_, Oct 20 2011: (Start)
%F a(n) = a(n-2) + 10.
%F a(n) = 5*n - 7 - 2*(-1)^n. (End)
%F From _Vincenzo Librandi_, Jul 11 2012: (Start)
%F G.f.: x^2*(1+9*x)/((1+x)*(1-x)^2).
%F a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
%F E.g.f.: 9 + (5*x - 7)*exp(x) - 2*exp(-x). - _David Lovler_, Sep 03 2022
%p A197652:=n->5*n-7-2*(-1)^n: seq(A197652(n), n=1..100); # _Wesley Ivan Hurt_, Sep 26 2015
%t CoefficientList[Series[x*(1+9*x)/((1+x)*(1-x)^2),{x,0,50}],x] (* _Vincenzo Librandi_, Jul 11 2012 *)
%o (PARI) a(n)=n\2*10+n%2*9-9 \\ _Charles R Greathouse IV_, Oct 25 2011
%o (Magma) [5*n-7-2*(-1)^n: n in [1..60]]; // _Vincenzo Librandi_, Jul 11 2012
%o (Python)
%o def A197652(n): return 5*n-(5 if n&1 else 9) # _Chai Wah Wu_, Oct 29 2024
%Y Cf. A020714, A030308, A260181, A262389.
%K nonn,easy
%O 1,3
%A _Philippe Deléham_, Oct 16 2011