login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052466 a(n) is the solution k to Mod[24k,13^n]==1. 5
6, 162, 1007, 27371, 170176, 4625692, 28759737, 781741941, 4860395546, 132114388022, 821406847267, 22327331575711, 138817757188116, 3773319036295152, 23460200964791597, 637690917133880681 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Related to a generalization of a Ramanujan congruence for the partition function P.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..900

Eric Weisstein's World of Mathematics, Partition Function P Congruences.

Index entries for linear recurrences with constant coefficients, signature (1,169,-169).

FORMULA

G.f.: x*(-169x^2+156x+6)/((1-x)(1-13x)(1+13x)). - Vincenzo Librandi, Jul 01 2012

a(n) = a(n-1) +169*a(n-2) -169*a(n-3). - Vincenzo Librandi, Jul 01 2012

MATHEMATICA

Table[PowerMod[24, -1, 13^d], {d, 20}]

CoefficientList[Series[(-169x^2+156x+6)/((1-x)(1-13x)(1+13x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 01 2012 *)

LinearRecurrence[{1, 169, -169}, {6, 162, 1007}, 30] (* Harvey P. Dale, Mar 15 2015 *)

PROG

(MAGMA) I:=[6, 162, 1007]; [n le 3 select I[n] else Self(n-1)+169*Self(n-2)-169*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 01 2012

CROSSREFS

Cf. A052462, A052463, A052465.

Sequence in context: A241453 A193370 A015086 * A280477 A078535 A177781

Adjacent sequences:  A052463 A052464 A052465 * A052467 A052468 A052469

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 11:11 EST 2020. Contains 331083 sequences. (Running on oeis4.)