login
A052469
Denominators in the Taylor series for arccosh(x) - log(2*x).
4
4, 32, 96, 1024, 2560, 4096, 28672, 524288, 1179648, 5242880, 11534336, 100663296, 218103808, 939524096, 134217728, 68719476736, 146028888064, 206158430208, 1305670057984, 2199023255552, 7696581394432, 96757023244288, 202310139510784, 1125899906842624
OFFSET
1,1
REFERENCES
Bronstein-Semendjajew, sprawotchnik po matematikje, 6th Russian ed. 1956, ch. 4.2.6.
LINKS
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosine
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine
FORMULA
A052468(n) / a(n) = A001147(n) / ( A000165(n) *2*n )
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = denom((2*n-1)!/( 4^n * (n!)^2)).
Equals 2*A162442(n+1) for n >= 1.
A052468(n)/a(n) = (1/(2*n))*A001790(n)/A046161(n) for n>=1.
(End)
EXAMPLE
arccosh(x) = log(2x) - 1/(4*x^2) - 3/(32*x^4) - 5/(96*x^6) - ... for x>1.
MATHEMATICA
a[n_] := Denominator[(2*n-1)!/(2^(2*n)*n!^2)]; Array[a, 21] (* Jean-François Alcover, May 17 2017 *)
PROG
(Magma) [Denominator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
(PARI) {a(n) = denominator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
(Sage) [denominator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
(GAP) List([1..30], n-> DenominatorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
CROSSREFS
Cf. A002595.
Sequence in context: A222326 A370082 A108914 * A211625 A211630 A211626
KEYWORD
nonn,easy,frac
EXTENSIONS
Updated by Frank Ellermann, May 22 2001
STATUS
approved