|
|
A052469
|
|
Denominators in the Taylor series for arccosh(x) - log(2*x).
|
|
4
|
|
|
4, 32, 96, 1024, 2560, 4096, 28672, 524288, 1179648, 5242880, 11534336, 100663296, 218103808, 939524096, 134217728, 68719476736, 146028888064, 206158430208, 1305670057984, 2199023255552, 7696581394432, 96757023244288, 202310139510784, 1125899906842624
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Bronstein-Semendjajew, sprawotchnik po matematikje, 6th Russian ed. 1956, ch. 4.2.6.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosine
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine
|
|
FORMULA
|
A052468(n) / a(n) = A001147(n) / ( A000165(n) *2*n )
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = denom((2*n-1)!/( 4^n * (n!)^2)).
Equals 2*A162442(n+1) for n >= 1.
A052468(n)/a(n) = (1/(2*n))*A001790(n)/A046161(n) for n>=1.
(End)
|
|
EXAMPLE
|
arccosh(x) = log(2x) - 1/(4*x^2) - 3/(32*x^4) - 5/(96*x^6) - ... for x>1.
|
|
MATHEMATICA
|
a[n_] := Denominator[(2*n-1)!/(2^(2*n)*n!^2)]; Array[a, 21] (* Jean-François Alcover, May 17 2017 *)
|
|
PROG
|
(MAGMA) [Denominator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
(PARI) {a(n) = denominator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
(Sage) [denominator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
(GAP) List([1..30], n-> DenominatorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
|
|
CROSSREFS
|
Cf. A002595.
Sequence in context: A153794 A222326 A108914 * A211625 A211630 A211626
Adjacent sequences: A052466 A052467 A052468 * A052470 A052471 A052472
|
|
KEYWORD
|
nonn,easy,frac
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
Updated by Frank Ellermann, May 22 2001
|
|
STATUS
|
approved
|
|
|
|