login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092436
a(n) = 1/2 + (-1)^n*(1/2 - A010060(floor(n/2))).
2
0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1
OFFSET
1,1
COMMENTS
From Jeffrey Shallit, Mar 02 2022: (Start)
Also, the parity of the number of 2's in the bijective base-2 representation of n - 1; this is the base-2 representation using the digits {1,2} in place of {0,1}.
Also, solution of the equation a = 0 mu(a), where mu is the Thue-Morse morphism 0 -> 01, 1 -> 10. (End)
LINKS
FORMULA
a(n) = 1-A010060(n). - Chai Wah Wu, Mar 03 2023
MATHEMATICA
Flatten[ NestList[ Function[l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {1, 0}})]}], {0}, 6]] (* Robert G. Wilson v, May 19 2005 *)
PROG
(Python)
def A092436(n): return n.bit_count()&1^1 # Chai Wah Wu, Mar 03 2023
CROSSREFS
Sequence in context: A090173 A214090 A072784 * A288306 A164056 A286059
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 23 2004
STATUS
approved