login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092439
Sequence arising from enumeration of domino tilings of Aztec Pillow-like regions.
3
0, 0, 6, 30, 140, 560, 2058, 7098, 23472, 75372, 237182, 735878, 2260596, 6896136, 20933778, 63325170, 191089112, 575626052, 1731858246, 5206059774, 15640198620, 46966732320, 140996664986, 423191320490, 1269993390720
OFFSET
0,3
REFERENCES
J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
LINKS
J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
FORMULA
a(n) = (3^(n+2)+(-1)^(n+2))/2-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2.
a(n) = Entry n+2 in row n of (Sequence to be added #1).
a(n) = A046717(n+2)-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2.
a(n) = 9*a(n-1)-30*a(n-2)+42*a(n-3)-9*a(n-4)-39*a(n-5)+40*a(n-6)-12*a(n-7). [Harvey P. Dale, Nov 27 2011]
G.f.: 2*x^2*(6*x^4-26*x^3+25*x^2-12*x+3)/((x-1)^3*(x+1)*(2*x-1)^2*(3*x-1)). [Colin Barker, Nov 22 2012]
EXAMPLE
a(3)=(3^5+(-1)^5)/2-2^5-5(2^4-1)+4^2=30.
MATHEMATICA
Table[(3^(n+2)+(-1)^(n+2))/2-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2, {n, 0, 30}] (* or *) LinearRecurrence[{9, -30, 42, -9, -39, 40, -12}, {0, 0, 6, 30, 140, 560, 2058}, 30] (* Harvey P. Dale, Nov 27 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
STATUS
approved