OFFSET
0,3
REFERENCES
J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 13).
LINKS
J. Propp, Publications and Preprints
J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
Index entries for linear recurrences with constant coefficients, signature (9,-30,42,-9,-39,40,-12).
FORMULA
a(n) = (3^(n+2)+(-1)^(n+2))/2-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2.
a(n) = Entry n+2 in row n of (Sequence to be added #1).
a(n) = A046717(n+2)-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2.
a(n) = 9*a(n-1)-30*a(n-2)+42*a(n-3)-9*a(n-4)-39*a(n-5)+40*a(n-6)-12*a(n-7). [Harvey P. Dale, Nov 27 2011]
G.f.: 2*x^2*(6*x^4-26*x^3+25*x^2-12*x+3)/((x-1)^3*(x+1)*(2*x-1)^2*(3*x-1)). [Colin Barker, Nov 22 2012]
EXAMPLE
a(3)=(3^5+(-1)^5)/2-2^5-5(2^4-1)+4^2=30.
MATHEMATICA
Table[(3^(n+2)+(-1)^(n+2))/2-2^(n+2)-(n+2)(2^(n+1)-1)+(n+1)^2, {n, 0, 30}] (* or *) LinearRecurrence[{9, -30, 42, -9, -39, 40, -12}, {0, 0, 6, 30, 140, 560, 2058}, 30] (* Harvey P. Dale, Nov 27 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Christopher Hanusa (chanusa(AT)math.washington.edu), Mar 24 2004
STATUS
approved