login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082149 A transform of C(n,2). 2
0, 0, 1, 6, 30, 140, 615, 2562, 10220, 39384, 147645, 541310, 1948650, 6908772, 24180611, 83702010, 286978200, 975725744, 3293074233, 11041484022, 36804946550, 122037454140, 402723598431, 1323234680306, 4330586226180 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Represents the mean of C(n,2) with its second binomial transform. Binomial transform of A080929 (preceded by two zeros).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (12,-57,136,-171,108,-27).

FORMULA

a(n) = C(n, 2)*(3^(n-2) + 1)/2.

G.f.: (x^2/(1-3x)^3+x^2/(1-x)^3)/2.

G.f.: x^2(14*x^3-15*x^2+6*x-1)/((1-x)^3*(3*x-1)^3).

E.g.f.: x^2*exp(2*x)*cosh(x)/2.

MATHEMATICA

CoefficientList[Series[(x^2/(1-3*x)^3 + x^2/(1-x)^3)/2, {x, 0, 50}], x] (* or *) Table[Binomial[n, 2]*(1 + 3^(n-2))/2, {n, 0, 30}] (* G. C. Greubel, Feb 10 2018 *)

PROG

(PARI) for(n=0, 30, print1(binomial(n, 2)*(1 + 3^(n-2))/2, ", ")) \\ G. C. Greubel, Feb 10 2018

(MAGMA) [Binomial(n, 2)*(1 + 3^(n-2))/2: n in [0..30]]; // G. C. Greubel, Feb 10 2018

CROSSREFS

Cf. A082150, A000217, A027472.

Sequence in context: A001334 A125316 A092439 * A002457 A137400 A220830

Adjacent sequences:  A082146 A082147 A082148 * A082150 A082151 A082152

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Apr 07 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 10:48 EDT 2019. Contains 323443 sequences. (Running on oeis4.)