This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047247 Numbers that are congruent to {2, 3, 4, 5} mod 6. 4
 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29, 32, 33, 34, 35, 38, 39, 40, 41, 44, 45, 46, 47, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 68, 69, 70, 71, 74, 75, 76, 77, 80, 81, 82, 83, 86, 87, 88, 89, 92, 93, 94, 95, 98, 99 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The sequence is the interleaving of A047235 with A047270. - Guenther Schrack, Feb 10 2019 LINKS Guenther Schrack, Table of n, a(n) for n = 1..10015 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA G.f.: x*(2+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(1-x)^2 ). - R. J. Mathar, Oct 08 2011 From Wesley Ivan Hurt, May 21 2016: (Start) a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. a(n) = (6*n - 1 - i^(2*n) - (1-i)*i^(-n) - (1+i)*i^n)/4 where i = sqrt(-1). a(2*n) = A047270(n), a(2*n-1) = A047235(n). a(n) = A047227(n) + 1, a(1-n) = - A047227(n). (End) From Guenther Schrack, Feb 10 2019: (Start) a(n) = (6*n - 1 - (-1)^n -2*(-1)^(n*(n+1)/2))/4. a(n) = a(n-4) + 6, a(1)=2, a(2)=3, a(3)=4, a(4)=5, for n > 4. a(n) = A047227(n) + 1. a(n) = A047246(n) + 2. (End) MAPLE A047247:=n->(6*n-1-I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/4: seq(A047247(n), n=1..100); # Wesley Ivan Hurt, May 21 2016 MATHEMATICA Table[(6n-1-I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *) PROG (MAGMA) [n : n in [0..100] | n mod 6 in [2, 3, 4, 5]]; // Wesley Ivan Hurt, May 21 2016 (PARI) my(x='x+O('x^70)); Vec(x*(2+x+x^2+x^3+x^4)/((1-x)*(1-x^4))) \\ G. C. Greubel, Feb 16 2019 (Sage) a=(x*(2+x+x^2+x^3+x^4)/((1-x)*(1-x^4))).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019 CROSSREFS Cf. A047227, A047235, A047246, A047270. Complement: A047225. Sequence in context: A046892 A068406 A276878 * A169606 A140769 A032877 Adjacent sequences:  A047244 A047245 A047246 * A047248 A047249 A047250 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Wesley Ivan Hurt, May 21 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 22:37 EST 2019. Contains 329782 sequences. (Running on oeis4.)