

A047247


Numbers that are congruent to {2, 3, 4, 5} mod 6.


4



2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29, 32, 33, 34, 35, 38, 39, 40, 41, 44, 45, 46, 47, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 68, 69, 70, 71, 74, 75, 76, 77, 80, 81, 82, 83, 86, 87, 88, 89, 92, 93, 94, 95, 98, 99
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The sequence is the interleaving of A047235 with A047270.  Guenther Schrack, Feb 10 2019


LINKS

Guenther Schrack, Table of n, a(n) for n = 1..10015
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,1).
Index entries for twoway infinite sequences


FORMULA

G.f.: x*(2+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(1x)^2 ).  R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n1) + a(n4)  a(n5) for n>5.
a(n) = (6*n  1  i^(2*n)  (1i)*i^(n)  (1+i)*i^n)/4 where i = sqrt(1).
a(2*n) = A047270(n), a(2*n1) = A047235(n).
a(n) = A047227(n) + 1, a(1n) =  A047227(n). (End)
From Guenther Schrack, Feb 10 2019: (Start)
a(n) = (6*n  1  (1)^n 2*(1)^(n*(n+1)/2))/4.
a(n) = a(n4) + 6, a(1)=2, a(2)=3, a(3)=4, a(4)=5, for n > 4.
a(n) = A047227(n) + 1. a(n) = A047246(n) + 2. (End)


MAPLE

A047247:=n>(6*n1I^(2*n)(1I)*I^(n)(1+I)*I^n)/4: seq(A047247(n), n=1..100); # Wesley Ivan Hurt, May 21 2016


MATHEMATICA

Table[(6n1I^(2n)(1I)*I^(n)(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)


PROG

(MAGMA) [n : n in [0..100]  n mod 6 in [2, 3, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
(PARI) my(x='x+O('x^70)); Vec(x*(2+x+x^2+x^3+x^4)/((1x)*(1x^4))) \\ G. C. Greubel, Feb 16 2019
(Sage) a=(x*(2+x+x^2+x^3+x^4)/((1x)*(1x^4))).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019


CROSSREFS

Cf. A047227, A047235, A047246, A047270.
Complement: A047225.
Sequence in context: A046892 A068406 A276878 * A169606 A140769 A032877
Adjacent sequences: A047244 A047245 A047246 * A047248 A047249 A047250


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Wesley Ivan Hurt, May 21 2016


STATUS

approved



