login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047249
Numbers that are congruent to {3, 4, 5} mod 6.
1
3, 4, 5, 9, 10, 11, 15, 16, 17, 21, 22, 23, 27, 28, 29, 33, 34, 35, 39, 40, 41, 45, 46, 47, 51, 52, 53, 57, 58, 59, 63, 64, 65, 69, 70, 71, 75, 76, 77, 81, 82, 83, 87, 88, 89, 93, 94, 95, 99, 100, 101, 105, 106, 107, 111, 112, 113, 117, 118, 119, 123, 124
OFFSET
1,1
FORMULA
G.f.: x*(3+x+x^2+x^3) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*n-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3).
a(3k) = 6k-1, a(3k-1) = 6k-2, a(3k-2) = 6k-3. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (9-2*sqrt(3))*Pi/36 + log(2)/6 - log(2+sqrt(3))/(2*sqrt(3)). - Amiram Eldar, Dec 16 2021
MAPLE
A047249:=n->2*n-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3): seq(A047249(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[150], MemberQ[{3, 4, 5}, Mod[#, 6]]&] (* Harvey P. Dale, Nov 21 2012 *)
PROG
(Magma) [n : n in [0..150] | n mod 6 in [3..5]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Sequence in context: A285161 A329781 A139531 * A327257 A228941 A236211
KEYWORD
nonn,easy
STATUS
approved