login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (-2 +x^2 +x -x*sqrt(1-2*x-3*x^2))/(-1 +x -sqrt(1-2*x-3*x^2)).
3

%I #40 Sep 20 2021 00:58:03

%S 1,1,1,2,5,12,30,76,196,512,1353,3610,9713,26324,71799,196938,542895,

%T 1503312,4179603,11662902,32652735,91695540,258215664,728997192,

%U 2062967382,5850674704,16626415975,47337954326,135015505407,385719506620,1103642686382

%N Expansion of (-2 +x^2 +x -x*sqrt(1-2*x-3*x^2))/(-1 +x -sqrt(1-2*x-3*x^2)).

%C For n > 1, a(n) is the number of Motzkin n-paths that start with an up step. - _Gennady Eremin_, Sep 18 2021

%H G. C. Greubel, <a href="/A244884/b244884.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from Vincenzo Librandi)

%H J.-L. Baril and A. Petrossian, <a href="http://jl.baril.u-bourgogne.fr/equivdyck.pdf">Equivalence classes of Dyck paths modulo some statistics</a>, 2014.

%H Gennady Eremin, <a href="https://arxiv.org/abs/2002.08067">Generating function for Naturalized Series: The case of Ordered Motzkin Words</a>, arXiv:2002.08067 [math.CO], 2020.

%F a(n) ~ 3^(n+1/2)/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Jul 10 2014

%F Conjecture D-finite with recurrence: (n+2)*a(n) +(-3*n-1)*a(n-1) -n*a(n-2) +3*(n-3)*a(n-3)=0. - _R. J. Mathar_, Jan 24 2020

%F G.f.: x + (1-x)*M(x), where M(x) is the g.f. of A001006. - _Gennady Eremin_, Feb 14 2021

%t CoefficientList[Series[(-2 + x^2 + x - x Sqrt[1 - 2 x - 3 x^2])/(-1 + x - Sqrt[1 - 2 x - 3 x^2]), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jul 10 2014 *)

%o (PARI) my(x='x + O('x^50)); Vec((-2 +x^2 +x -x*sqrt(1-2*x-3*x^2))/(-1 +x -sqrt(1-2*x-3*x^2))) \\ _G. C. Greubel_, Feb 14 2017

%Y Apart from initial terms, same as A002026 and A105695.

%Y Cf. A001006.

%K nonn

%O 0,4

%A _N. J. A. Sloane_, Jul 09 2014