login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307573
Number of Motzkin excursions of length n with an odd number of humps.
1
0, 0, 1, 3, 7, 15, 32, 70, 161, 393, 1012, 2706, 7392, 20384, 56359, 155801, 430497, 1190017, 3295100, 9149602, 25495910, 71318078, 200242825, 564166011, 1594291230, 4517054710, 12826583811, 36493143333, 104008257711, 296906934031, 848843276928, 2430293483566
OFFSET
0,4
COMMENTS
a(n) is the number of Motzkin excursions with an odd number of humps.
A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0.
A hump is an occurrence of the pattern UHH...HD (the number of 0's in the pattern is not fixed, and can be 0).
FORMULA
G.f.: (-2*t^2 - sqrt((1-t^2)*(1-4*t+3*t^2)) + sqrt((1+t^2)*(1-4*t+5*t^2))) / (4*t^2*(1-t)).
D-finite with recurrence +n*(n+2)*(5*n^2-105*n+454)*a(n) +(5*n^4+365*n^3-2348*n^2-614*n+1530)*a(n-1) +(-195*n^4+950*n^3+2838*n^2-8804*n+1530)*a(n-2) +(605*n^4-5865*n^3+13255*n^2+2724*n-14400)*a(n-3) +(-605*n^4+7370*n^3-27409*n^2+29410*n+4140)*a(n-4) +(-5*n^4-65*n^3+1418*n^2-7270*n+12690)*a(n-5) +(195*n^4-1850*n^3+492*n^2+31376*n-58950)*a(n-6) -5*(n-6)*(121*n^3-1227*n^2+2411*n+3042)*a(n-7) +75*(n-6)*(n-7)*(8*n^2-37*n-12)*a(n-8)=0. - R. J. Mathar, Mar 06 2022
EXAMPLE
For n = 4 the a(4) = 7 paths are UDHH, HUDH, HHUD, UHDH, HUHD, UHHD, UUDD.
MAPLE
b:= proc(x, y, t, c) option remember; `if`(y>x or y<0, 0, `if`(x=0, c,
b(x-1, y-1, 0, irem(c+t, 2))+b(x-1, y, t, c)+b(x-1, y+1, 1, c)))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=0..35); # Alois P. Heinz, Apr 15 2019
MATHEMATICA
b[x_, y_, t_, c_] := b[x, y, t, c] = If[y > x || y < 0, 0, If[x == 0, c, b[x-1, y-1, 0, Mod[c+t, 2]] + b[x-1, y, t, c] + b[x-1, y+1, 1, c]]];
a[n_] := b[n, 0, 0, 0];
a /@ Range[0, 35] (* Jean-François Alcover, May 11 2020, after Maple *)
CROSSREFS
Cf. A001006.
Sequence in context: A132402 A137166 A101890 * A134195 A365527 A079444
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Apr 15 2019
STATUS
approved