The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101890 a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*Fibonacci(k). 0
 0, 0, 1, 3, 7, 15, 32, 70, 157, 357, 815, 1859, 4232, 9620, 21853, 49635, 112747, 256139, 581944, 1322210, 3004145, 6825557, 15507867, 35234183, 80052656, 181881000, 413236953, 938882307, 2133159119, 4846579847, 11011525360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Transform of F(n) under the mapping g(x)-> (1/(1-x))g(x^2/((1-x)^2). Binomial transform of aerated Fibonacci numbers 0,0,1,0,1,0,2,0,3,0,5,... F(n) may be recovered as Sum_{k=0..2*n} Sum_{j=0..k} C(0,2*n-k)*C(k,j)*(-1)^(k-j)*a(j). - Paul Barry, Jun 10 2005 LINKS Table of n, a(n) for n=0..30. M. Abrate, S. Barbero, U. Cerruti, N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011) # 11.8.1. Index entries for linear recurrences with constant coefficients, signature (4,-5,2,1). FORMULA G.f.: x^2*(1-x)/(1-4*x+5*x^2-2*x^3-x^4). a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3)+a(n-4). a(n) = Sum_{k=0..n} binomial(n, k)*Fibonacci(k/2)*(1+(-1)^k)/2. MATHEMATICA LinearRecurrence[{4, -5, 2, 1}, {0, 0, 1, 3}, 40] (* Harvey P. Dale, Jul 19 2018 *) CROSSREFS Cf. A000045. Sequence in context: A374678 A132402 A137166 * A307573 A134195 A365527 Adjacent sequences: A101887 A101888 A101889 * A101891 A101892 A101893 KEYWORD easy,nonn AUTHOR Paul Barry, Dec 20 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 12:50 EDT 2024. Contains 376012 sequences. (Running on oeis4.)