OFFSET
0,6
COMMENTS
A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.
A peak is an occurrence of the pattern UD.
A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).
LINKS
Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
FORMULA
G.f.: ( sqrt((1+t)/(1-3*t)) - sqrt((1+t+2*t^2)/((1-2*t)*(1-t))) + sqrt((1+t^2)/(1-4*t+5*t^2)) - sqrt((1-t^2+2*t^3)/((1-2*t)*(1-t^2-2*t))) ) / (8*t).
a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 09 2019
EXAMPLE
For n=5, the a(5)=2 paths are UDUHD and UHDUD (2 humps, 1 peak).
For n=6, we have a(6)=14 paths: 6 paths obtained by a permutation of {UD, UHD, H}, 6 paths obtained by a permutation of {UD, UHD, U}, and 2 paths obtained by a permutation of {UD, UHHD}.
MATHEMATICA
CoefficientList[Series[(Sqrt[(1 + x)/(1 - 3*x)] - Sqrt[(1 + x + 2*x^2)/((1 - 2*x)*(1 - x))] + Sqrt[(1 + x^2)/(1 - 4*x + 5*x^2)] - Sqrt[(1 - x^2 + 2*x^3)/((1 - 2*x)*(1 - 2*x - x^2))])/(8*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 09 2019 *)
CROSSREFS
Motzkin meanders and excursions with restrictions on the number of humps and peaks:
A325921: Meanders, #humps=EVEN, #peaks=EVEN.
A325922: Excursions, #humps=EVEN, #peaks=EVEN.
A325923: Meanders, #humps=ODD, #peaks=EVEN.
A325924: Excursions, #humps=ODD, #peaks=EVEN.
A325925 (this sequence): Meanders, #humps=EVEN, #peaks=ODD.
A325926: Excursions, #humps=EVEN, #peaks=ODD.
A325927: Meanders, #humps=ODD, #peaks=ODD.
A325928: Excursions, #humps=ODD, #peaks=ODD.
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Jul 14 2019
STATUS
approved