login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325924
Number of Motzkin excursions of length n with an odd number of humps and an even number of peaks.
5
0, 0, 0, 1, 3, 7, 15, 34, 78, 191, 493, 1324, 3626, 10032, 27808, 77045, 213273, 590475, 1637117, 4550836, 12692866, 35532414, 99830094, 281412535, 795601139, 2254966896, 6405076658, 18227600051, 51960277037, 148352016215, 424186720927, 1214602291322
OFFSET
0,5
COMMENTS
A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0.
A peak is an occurrence of the pattern UD.
A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).
Thus every peak is also a hump.
FORMULA
G.f.: -( 4*t^3 + sqrt((1-2*t-3*t^2)*(1-t)^2) + sqrt((1-t-4*t^3)*(1-t)^3) - sqrt((1+t^2)*(1-4*t+5*t^2)) - sqrt((1-2*t)*(1-2*t-t^2)*(1-t^2+2*t^3)) ) / (8*t^2*(1-t)).
a(n) ~ 3^(n + 3/2) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 09 2019
EXAMPLE
For n = 5 the a(5) = 7 paths are UHHHD, UHHDH, HUHHD, HHUHD, HUHDH, UHDHH, UUHDD. In all these paths, 0 peaks and 1 hump.
For n = 0..6, we have only paths with 0 peaks and 1 hump.
For n=7, we have a(n)=34. Among them, 31 paths with 0 peaks and 1 hump, and 3 walks with 2 peaks and 3 humps: UDUDUHD, UDUHDUD, UHDUDUD.
MAPLE
b:= proc(x, y, t, p, h) option remember; `if`(y>x, 0, `if`(x=0,
`if`(p+1=h, 1, 0), `if`(y>0, b(x-1, y-1, 0, irem(p+
`if`(t=1, 1, 0), 2), irem(h+`if`(t=2, 1, 0), 2)), 0)+
b(x-1, y, `if`(t>0, 2, 0), p, h)+b(x-1, y+1, 1, p, h)))
end:
a:= n-> b(n, 0$4):
seq(a(n), n=0..35); # Alois P. Heinz, Jul 04 2019
MATHEMATICA
CoefficientList[Series[-(4 x^3 + Sqrt[(1 - 2 x - 3 x^2)(1 -x)^2] + Sqrt[(1 - x - 4 x^3) (1 - x)^3] - Sqrt[(1 + x^2) (1 - 4 x + 5 x^2)] - Sqrt[(1 - 2 x) (1 - 2 x - x^2) (1 - x^2 + 2 x^3)]) / (8 x^2 (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Jul 09 2019 *)
CROSSREFS
Cf. A325923.
Sequence in context: A147102 A147379 A213722 * A217092 A153588 A221945
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Jul 04 2019
STATUS
approved