login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325923
Number of Motzkin meanders of length n with an odd number of humps and an even number of peaks.
6
0, 0, 0, 1, 5, 18, 56, 163, 459, 1286, 3640, 10479, 30659, 90738, 270092, 804833, 2393929, 7098790, 20984188, 61872587, 182130495, 535698422, 1575478728, 4635125097, 13645054833, 40196623234, 118493318904, 349506908369, 1031426887149
OFFSET
0,5
COMMENTS
A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.
A peak is an occurrence of the pattern UD.
A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).
FORMULA
G.f.: ( (-3*t^2+4*t+sqrt(-3*t^4+4*t^3+2*t^2-4*t+1)-1)/(3*t^2-4*t+1) + (2*t^3-5*t^2+4*t+sqrt(4*t^6-12*t^5+13*t^4-8*t^3+6*t^2-4*t+1)-1)/(-2*t^3+5*t^2-4*t+1) - (-5*t^2+4*t+sqrt(5*t^4-4*t^3+6*t^2-4*t+1)-1)/(5*t^2-4*t+1) - (-2*t^3-3*t^2+4*t+sqrt(4*t^6+4*t^5-11*t^4+8*t^3+2*t^2-4*t+1)-1)/(2*t^3+3*t^2-4*t+1) ) / (8*t).
a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 09 2019
EXAMPLE
For n = 4 the a(4) = 5 paths are UHDU, UHDH, UUHD, HUHD, UHHD: in all these paths, 0 peaks, 1 hump.
For n=0..6 we have only paths with 0 peaks and 1 hump.
For n=7, we have a(7)=163. Among them, 160 paths with 0 peaks and 1 hump, and 3 walks with 2 peaks and 3 humps: UDUDUHD, UDUHDUD, UHDUDUD.
MAPLE
b:= proc(x, y, t, p, h) option remember; `if`(x=0, `if`(p+1=h, 1, 0),
`if`(y>0, b(x-1, y-1, 0, irem(p+`if`(t=1, 1, 0), 2), irem(h+
`if`(t=2, 1, 0), 2)), 0)+b(x-1, y, `if`(t>0, 2, 0), p, h)+
b(x-1, y+1, 1, p, h))
end:
a:= n-> b(n, 0$4):
seq(a(n), n=0..35); # Alois P. Heinz, Jul 04 2019
MATHEMATICA
CoefficientList[Series[((-1 + 4*x - 3*x^2 + Sqrt[(-(-1 + x)^2)*(-1 + 2*x + 3*x^2)])/ (1 - 4*x + 3*x^2) - (-1 + 4*x - 5*x^2 + 2*x^3 + Sqrt[(-1 + x)^3*(-1 + x + 4*x^3)])/ ((-1 + x)^2*(-1 + 2*x)) + (1 - 4*x + 5*x^2 - Sqrt[1 - 4*x + 6*x^2 - 4*x^3 + 5*x^4])/(1 - 4*x + 5*x^2) + (1 - 4*x + 3*x^2 + 2*x^3 - Sqrt[1 - 4*x + 2*x^2 + 8*x^3 - 11*x^4 + 4*x^5 + 4*x^6])/(1 - 4*x + 3*x^2 + 2*x^3)) / (8*x), {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 09 2019 *)
CROSSREFS
Cf. A325921.
Sequence in context: A325919 A317849 A307572 * A335720 A093374 A258109
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Jul 04 2019
STATUS
approved