login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317849
Number of states of the Finite State Automaton Gn accepting the language of maximal (or minimal) lexicographic representatives of elements in the positive braid monoid An.
0
1, 5, 18, 56, 161, 443, 1190, 3156, 8315, 21835, 57246, 149970, 392743, 1028351, 2692416, 7049018, 18454775, 48315461, 126491780, 331160070, 866988641, 2269806085, 5942429868, 15557483796, 40730021821, 106632581993, 279167724510, 730870591916, 1913444051645, 5009461563455
OFFSET
1,2
LINKS
Ramón Flores, Juan González-Meneses, On lexicographic representatives in braid monoids, arXiv:1808.02755 [math.GR], 2018.
Volker Gebhardt, Juan González-Meneses, Generating random braids, J. Comb. Th. A 120 (1), 2013, 111-128.
FORMULA
a(n) = Sum_{i=1..n} (binomial(n+1-i, 2)+1)*Fibonacci(2*i).
Conjecture: g.f. -x*(1-x+x^2) / ( (x^2-3*x+1)*(x-1)^3 ). a(n) = 2*A001519(n+1) -n*(n+1)/2 -2 = 2*A001519(n+1)-A152948(n+2). - R. J. Mathar, Aug 17 2018
MATHEMATICA
Table[Sum[(Binomial[n + 1 - k, 2] + 1) Fibonacci[2 k], {k, n}], {n, 30}] (* Vincenzo Librandi, Aug 09 2018 *)
PROG
(PARI) a(n) = sum(i=1, n, (binomial(n+1-i, 2)+1)*fibonacci(2*i));
(Magma) [&+[(Binomial(n+1-k, 2)+1)*Fibonacci(2*k): k in [1..n]]: n in [1..30]]; // Vincenzo Librandi, Aug 09 2018
(GAP) List([1..30], n->Sum([1..n], i->(Binomial(n+1-i, 2)+1)*Fibonacci(2*i))); # Muniru A Asiru, Aug 09 2018
CROSSREFS
Sequence in context: A145129 A001793 A325919 * A307572 A325923 A335720
KEYWORD
nonn
AUTHOR
Michel Marcus, Aug 09 2018
STATUS
approved