login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317852
Number of plane trees with n nodes where the sequence of branches directly under any given node is aperiodic, meaning its cyclic permutations are all different.
4
1, 1, 1, 3, 8, 26, 76, 247, 783, 2565, 8447, 28256, 95168, 323720, 1108415, 3821144, 13246307, 46158480, 161574043, 567925140, 2003653016, 7092953340, 25186731980, 89690452750, 320221033370, 1146028762599, 4110596336036, 14774346783745, 53203889807764, 191934931634880
OFFSET
1,4
COMMENTS
Also the number of plane trees with n nodes where the sequence of branches directly under any given node has relatively prime run-lengths.
LINKS
EXAMPLE
The a(5) = 8 locally aperiodic plane trees:
((((o)))),
(((o)o)), ((o(o))), (((o))o), (o((o))),
((o)oo), (o(o)o), (oo(o)).
The a(6) = 26 locally aperiodic plane trees:
(((((o))))) ((((o)o))) (((o)oo)) ((o)ooo)
(((o(o)))) ((o(o)o)) (o(o)oo)
((((o))o)) ((oo(o))) (oo(o)o)
((o((o)))) (((o)o)o) (ooo(o))
((((o)))o) ((o(o))o)
(o(((o)))) (o((o)o))
(((o))(o)) (o(o(o)))
((o)((o))) (((o))oo)
(o((o))o)
(oo((o)))
((o)(o)o)
((o)o(o))
(o(o)(o))
MATHEMATICA
aperQ[q_]:=Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
aperplane[n_]:=If[n==1, {{}}, Join@@Table[Select[Tuples[aperplane/@c], aperQ], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[aperplane[n]], {n, 10}]
PROG
(PARI)
Tfm(p, n)={sum(d=1, n, moebius(d)*(subst(1/(1+O(x*x^(n\d))-p), x, x^d)-1))}
seq(n)={my(p=O(1)); for(i=1, n, p=1+Tfm(x*p, i)); Vec(p)} \\ Andrew Howroyd, Feb 08 2020
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 05 2018
EXTENSIONS
a(16)-a(17) from Robert Price, Sep 15 2018
Terms a(18) and beyond from Andrew Howroyd, Feb 08 2020
STATUS
approved