OFFSET
1,4
COMMENTS
Also the number of plane trees with n nodes where the sequence of branches directly under any given node has relatively prime run-lengths.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
EXAMPLE
The a(5) = 8 locally aperiodic plane trees:
((((o)))),
(((o)o)), ((o(o))), (((o))o), (o((o))),
((o)oo), (o(o)o), (oo(o)).
The a(6) = 26 locally aperiodic plane trees:
(((((o))))) ((((o)o))) (((o)oo)) ((o)ooo)
(((o(o)))) ((o(o)o)) (o(o)oo)
((((o))o)) ((oo(o))) (oo(o)o)
((o((o)))) (((o)o)o) (ooo(o))
((((o)))o) ((o(o))o)
(o(((o)))) (o((o)o))
(((o))(o)) (o(o(o)))
((o)((o))) (((o))oo)
(o((o))o)
(oo((o)))
((o)(o)o)
((o)o(o))
(o(o)(o))
MATHEMATICA
aperQ[q_]:=Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
aperplane[n_]:=If[n==1, {{}}, Join@@Table[Select[Tuples[aperplane/@c], aperQ], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[aperplane[n]], {n, 10}]
PROG
(PARI)
Tfm(p, n)={sum(d=1, n, moebius(d)*(subst(1/(1+O(x*x^(n\d))-p), x, x^d)-1))}
seq(n)={my(p=O(1)); for(i=1, n, p=1+Tfm(x*p, i)); Vec(p)} \\ Andrew Howroyd, Feb 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 05 2018
EXTENSIONS
a(16)-a(17) from Robert Price, Sep 15 2018
Terms a(18) and beyond from Andrew Howroyd, Feb 08 2020
STATUS
approved