login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of plane trees with n nodes where the sequence of branches directly under any given node is aperiodic, meaning its cyclic permutations are all different.
4

%I #50 Feb 08 2020 20:41:49

%S 1,1,1,3,8,26,76,247,783,2565,8447,28256,95168,323720,1108415,3821144,

%T 13246307,46158480,161574043,567925140,2003653016,7092953340,

%U 25186731980,89690452750,320221033370,1146028762599,4110596336036,14774346783745,53203889807764,191934931634880

%N Number of plane trees with n nodes where the sequence of branches directly under any given node is aperiodic, meaning its cyclic permutations are all different.

%C Also the number of plane trees with n nodes where the sequence of branches directly under any given node has relatively prime run-lengths.

%H Andrew Howroyd, <a href="/A317852/b317852.txt">Table of n, a(n) for n = 1..200</a>

%e The a(5) = 8 locally aperiodic plane trees:

%e ((((o)))),

%e (((o)o)), ((o(o))), (((o))o), (o((o))),

%e ((o)oo), (o(o)o), (oo(o)).

%e The a(6) = 26 locally aperiodic plane trees:

%e (((((o))))) ((((o)o))) (((o)oo)) ((o)ooo)

%e (((o(o)))) ((o(o)o)) (o(o)oo)

%e ((((o))o)) ((oo(o))) (oo(o)o)

%e ((o((o)))) (((o)o)o) (ooo(o))

%e ((((o)))o) ((o(o))o)

%e (o(((o)))) (o((o)o))

%e (((o))(o)) (o(o(o)))

%e ((o)((o))) (((o))oo)

%e (o((o))o)

%e (oo((o)))

%e ((o)(o)o)

%e ((o)o(o))

%e (o(o)(o))

%t aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ];

%t aperplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[aperplane/@c],aperQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];

%t Table[Length[aperplane[n]],{n,10}]

%o (PARI)

%o Tfm(p, n)={sum(d=1, n, moebius(d)*(subst(1/(1+O(x*x^(n\d))-p), x, x^d)-1))}

%o seq(n)={my(p=O(1)); for(i=1, n, p=1+Tfm(x*p, i)); Vec(p)} \\ _Andrew Howroyd_, Feb 08 2020

%Y Cf. A000108, A000837, A007853, A032171, A032200, A254040, A301700, A303386, A303431, A304173, A304175, A317708, A317852.

%K nonn

%O 1,4

%A _Gus Wiseman_, Sep 05 2018

%E a(16)-a(17) from _Robert Price_, Sep 15 2018

%E Terms a(18) and beyond from _Andrew Howroyd_, Feb 08 2020