login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317847
Numerators of sequence whose Dirichlet convolution with itself yields A303757, the ordinal transform of function a(1) = 0; a(n) = phi(n) for n > 1, where phi is Euler's totient function (A000010).
3
1, 1, 1, 7, 1, 5, 1, 9, 7, 5, 1, 15, 1, 5, 1, 43, 1, 15, 1, 7, 3, 3, 1, 5, 3, 5, 9, 15, 1, 9, 1, 87, 3, 5, 1, 1, 1, 5, 3, 13, 1, 11, 1, 11, 15, 3, 1, 187, 7, 19, 1, 15, 1, 5, 3, 21, 3, 3, 1, -1, 1, 3, 11, 387, 1, 9, 1, 7, 1, 13, 1, 119, 1, 7, 19, 23, 3, 19, 1, 139, -21, 7, 1, 21, 1, 5, 1, 39, 1, 67, 3, 3, 5, 3, 5, 451, 1, 15, 19, 69, 1, 13, 1, -27, 7
OFFSET
1,4
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A303757(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
MATHEMATICA
A303757[n_] := If[n == 2, 1, Count[EulerPhi[Range[n]] - EulerPhi[n], 0]];
f[n_] := f[n] = If[n == 1, 1, (1/2)(A303757[n] -
Sum[If[1<d<n, f[d] f[n/d], 0], {d, Divisors[n]}])];
a[n_] := Numerator[f[n]];
Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v303757 = ordinal_transform(vector(up_to, n, if(1==n, 0, eulerphi(n))));
v317847 = DirSqrt(vector(up_to, n, v303757[n]));
A317847(n) = numerator(v317847[n]);
CROSSREFS
Cf. A000010, A303757, A046644 (denominators).
Sequence in context: A117182 A143301 A225459 * A181722 A317833 A021587
KEYWORD
sign
AUTHOR
Antti Karttunen, Aug 14 2018
STATUS
approved