login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of states of the Finite State Automaton Gn accepting the language of maximal (or minimal) lexicographic representatives of elements in the positive braid monoid An.
0

%I #13 Sep 08 2022 08:46:22

%S 1,5,18,56,161,443,1190,3156,8315,21835,57246,149970,392743,1028351,

%T 2692416,7049018,18454775,48315461,126491780,331160070,866988641,

%U 2269806085,5942429868,15557483796,40730021821,106632581993,279167724510,730870591916,1913444051645,5009461563455

%N Number of states of the Finite State Automaton Gn accepting the language of maximal (or minimal) lexicographic representatives of elements in the positive braid monoid An.

%H Ramón Flores, Juan González-Meneses, <a href="https://arxiv.org/abs/1808.02755">On lexicographic representatives in braid monoids</a>, arXiv:1808.02755 [math.GR], 2018.

%H Volker Gebhardt, Juan González-Meneses, <a href="https://doi.org/10.1016/j.jcta.2012.07.003">Generating random braids</a>, J. Comb. Th. A 120 (1), 2013, 111-128.

%F a(n) = Sum_{i=1..n} (binomial(n+1-i, 2)+1)*Fibonacci(2*i).

%F Conjecture: g.f. -x*(1-x+x^2) / ( (x^2-3*x+1)*(x-1)^3 ). a(n) = 2*A001519(n+1) -n*(n+1)/2 -2 = 2*A001519(n+1)-A152948(n+2). - _R. J. Mathar_, Aug 17 2018

%t Table[Sum[(Binomial[n + 1 - k, 2] + 1) Fibonacci[2 k], {k, n}], {n, 30}] (* _Vincenzo Librandi_, Aug 09 2018 *)

%o (PARI) a(n) = sum(i=1, n, (binomial(n+1-i, 2)+1)*fibonacci(2*i));

%o (Magma) [&+[(Binomial(n+1-k, 2)+1)*Fibonacci(2*k): k in [1..n]]: n in [1..30]]; // _Vincenzo Librandi_, Aug 09 2018

%o (GAP) List([1..30],n->Sum([1..n],i->(Binomial(n+1-i,2)+1)*Fibonacci(2*i))); # _Muniru A Asiru_, Aug 09 2018

%K nonn

%O 1,2

%A _Michel Marcus_, Aug 09 2018