|
|
A093374
|
|
Number of 1-2-3-avoiding permutations with exactly thrice the 1-3-2 pattern.
|
|
1
|
|
|
1, 5, 18, 57, 168, 472, 1280, 3376, 8704, 22016, 54784, 134400, 325632, 780288, 1851392, 4354048, 10158080, 23527424, 54132736, 123797504, 281542656, 637009920, 1434451968, 3215982592, 7180648448, 15971909632, 35399925760, 78198603776, 172201345024
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = C(n-3, 1)2^(n-4) + C(n-3, 1)2^(n-5) + C(n-3, 2)2^(n-7) for n<4, a(n) = 0.
G.f.: x^4*(1 - 3*x + 2*x^2 + x^3) / (1 - 2*x)^4. Corrected by Colin Barker, Feb 13 2017
a(n) = 2^(n-8)*(-120 + 38*n - 3*n^2 + n^3) / 3 for n>3.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>7.
(End)
|
|
MATHEMATICA
|
LinearRecurrence[{8, -24, 32, -16}, {1, 5, 18, 57}, 30] (* Harvey P. Dale, Apr 22 2024 *)
|
|
PROG
|
(PARI) a(n)=if(n<4, 0, 2^(n-4)*binomial(n-3, 1)+2^(n-5)*binomial(n-3, 2)+2^(n-7)*binomial(n-4, 3))
(PARI) Vec(x^4*(1 - 3*x + 2*x^2 + x^3) / (1 - 2*x)^4 + O(x^30)) \\ Colin Barker, Feb 13 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|