login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A093377
Number of labeled n-vertex graphs without 2-components and without isolated vertices (1-components).
1
1, 0, 0, 4, 38, 728, 26864, 1871576, 251762204, 66308767200, 34497665550400, 35641856042561008, 73354660691960203016, 301272244237002052739424, 2471648864359822034978330304, 40527681073171940835893232576032
OFFSET
0,4
COMMENTS
Also number of unlabeled n-block ordered r-bicoverings, cf. A060053. - Vladeta Jovovic, May 13 2004
LINKS
FORMULA
E.g.f.: exp(-x-x^2/2)*Sum_{n>=0} 2^binomial(n, 2)*x^n/n!.
Inverse binomial transform of A093352().
MATHEMATICA
nn=20; g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn}]; Range[0, nn]!CoefficientList[Series[Exp[ Log[g]-x-x^2/2!], {x, 0, nn}], x] (* Geoffrey Critzer, Apr 15 2013 *)
PROG
(PARI) N=66; x='x+O('x^N);
egf=exp(-x-x^2/2)*sum(i=0, N, 2^binomial(i, 2)*x^i/i!);
Vec(serlaplace(egf))
/* Joerg Arndt, Jul 06 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, Apr 28 2004
STATUS
approved