OFFSET
0,4
COMMENTS
Also number of unlabeled n-block ordered r-bicoverings, cf. A060053. - Vladeta Jovovic, May 13 2004
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..65
FORMULA
E.g.f.: exp(-x-x^2/2)*Sum_{n>=0} 2^binomial(n, 2)*x^n/n!.
Inverse binomial transform of A093352().
MATHEMATICA
nn=20; g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn}]; Range[0, nn]!CoefficientList[Series[Exp[ Log[g]-x-x^2/2!], {x, 0, nn}], x] (* Geoffrey Critzer, Apr 15 2013 *)
PROG
(PARI) N=66; x='x+O('x^N);
egf=exp(-x-x^2/2)*sum(i=0, N, 2^binomial(i, 2)*x^i/i!);
Vec(serlaplace(egf))
/* Joerg Arndt, Jul 06 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, Apr 28 2004
STATUS
approved