login
A343802
Least positive integer k such that Sum_{i=1..k} phi(i) >= 10^n.
1
1, 5, 18, 57, 181, 573, 1814, 5736, 18138, 57357, 181380, 573574, 1813799, 5735737, 18137993, 57357372, 181379937, 573573721, 1813799364, 5735737209, 18137993642, 57357372095, 181379936423, 573573720955, 1813799364234, 5735737209545, 18137993642342, 57357372095455
OFFSET
0,2
COMMENTS
Least integer k such that A002088(k) >= 10^n.
Since A002088(k) = (3*k^2)/(Pi^2) + O(k log k), the digits of a(n) for n even (resp. odd) approach the decimal digits of Pi/sqrt(3)=1.8137993642342... and Pi*sqrt(10/3)=5.7357372095454... resp.
Conjecture: For n even, either a(n) = floor(Pi/sqrt(3)*10^(n/2)) or a(n) = floor(Pi/sqrt(3)*10^(n/2))+1. For n odd, either a(n) = floor(Pi*sqrt(10/3)*10^((n-1)/2)) or a(n) = floor(Pi*sqrt(10/3)*10^((n-1)/2))+1.
LINKS
PROG
(Python)
from sympy import totient
def A343802(n):
s, c = 0, 0
while s < 10**n:
c += 1
s += totient(c)
return c
CROSSREFS
Sequence in context: A093374 A258109 A000745 * A271014 A272583 A247717
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Apr 29 2021
STATUS
approved