login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343804
T(n, k) = Sum_{j=k..n} binomial(n, j)*E2(j, j-k), where E2 are the Eulerian numbers A201637. Triangle read by rows, T(n, k) for 0 <= k <= n.
0
1, 1, 1, 1, 4, 1, 1, 15, 11, 1, 1, 64, 96, 26, 1, 1, 325, 824, 448, 57, 1, 1, 1956, 7417, 6718, 1779, 120, 1, 1, 13699, 71595, 96633, 43411, 6429, 247, 1, 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1, 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1
OFFSET
0,5
EXAMPLE
Triangle starts:
[0] 1
[1] 1, 1
[2] 1, 4, 1
[3] 1, 15, 11, 1
[4] 1, 64, 96, 26, 1
[5] 1, 325, 824, 448, 57, 1
[6] 1, 1956, 7417, 6718, 1779, 120, 1
[7] 1, 13699, 71595, 96633, 43411, 6429, 247, 1
[8] 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1
[9] 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1
MAPLE
T := (n, k) -> add(binomial(n, r)*combinat:-eulerian2(r, r-k), r = k..n):
seq(seq(T(n, k), k = 0..n), n = 0..9);
CROSSREFS
Row sums: A084262.
Cf. A046802 (Eulerian first order).
Sequence in context: A208956 A271705 A320280 * A157211 A176428 A116469
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 30 2021
STATUS
approved