login
A343807
T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 - 2*t + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.
3
1, 1, 0, 1, 2, 2, 1, 6, 18, 32, 1, 12, 72, 280, 636, 1, 20, 200, 1320, 6060, 15744, 1, 30, 450, 4480, 32460, 166536, 470680, 1, 42, 882, 12320, 127260, 996408, 5526136, 16542336, 1, 56, 1568, 29232, 405720, 4384800, 36529920, 214436160, 669165840
OFFSET
0,5
COMMENTS
The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type D. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163).
LINKS
Federico Ardila, Matthias Beck, and Jodi McWhirter, The arithmetic of Coxeter permutahedra, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(173):1152-1166, 2020.
EXAMPLE
[0] 1;
[1] 1, 0;
[2] 1, 2, 2;
[3] 1, 6, 18, 32;
[4] 1, 12, 72, 280, 636;
[5] 1, 20, 200, 1320, 6060, 15744;
[6] 1, 30, 450, 4480, 32460, 166536, 470680;
[7] 1, 42, 882, 12320, 127260, 996408, 5526136, 16542336;
[8] 1, 56, 1568, 29232, 405720, 4384800, 36529920, 214436160, 669165840;
MAPLE
alias(W = LambertW):
EhrD := exp(-(1-t)*W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t)) / sqrt(1+W(-2*t*x)):
ser := series(EhrD, x, 10): cx := n -> n!*coeff(ser, x, n):
T := n -> seq(coeff(cx(n), t, k), k = 0..n): seq(T(n), n = 0..8);
MATHEMATICA
P := ProductLog[-2 t x]; gf := 1/(E^((P (2 - 2 t + P))/(4 t)) Sqrt[1 + P]);
ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n];
Table[If[n == 1, {1, 0}, CoefficientList[cx[n], t]], {n, 0, 8}] // Flatten
CROSSREFS
Cf. A138464 (type A), A343805 (type B), A343806 (type C), this sequence (type D).
Sequence in context: A350297 A181731 A278792 * A340734 A108338 A021455
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 01 2021
STATUS
approved