OFFSET
0,5
COMMENTS
The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type D. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163).
LINKS
Federico Ardila, Matthias Beck, and Jodi McWhirter, The arithmetic of Coxeter permutahedra, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(173):1152-1166, 2020.
EXAMPLE
[0] 1;
[1] 1, 0;
[2] 1, 2, 2;
[3] 1, 6, 18, 32;
[4] 1, 12, 72, 280, 636;
[5] 1, 20, 200, 1320, 6060, 15744;
[6] 1, 30, 450, 4480, 32460, 166536, 470680;
[7] 1, 42, 882, 12320, 127260, 996408, 5526136, 16542336;
[8] 1, 56, 1568, 29232, 405720, 4384800, 36529920, 214436160, 669165840;
MAPLE
alias(W = LambertW):
EhrD := exp(-(1-t)*W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t)) / sqrt(1+W(-2*t*x)):
ser := series(EhrD, x, 10): cx := n -> n!*coeff(ser, x, n):
T := n -> seq(coeff(cx(n), t, k), k = 0..n): seq(T(n), n = 0..8);
MATHEMATICA
P := ProductLog[-2 t x]; gf := 1/(E^((P (2 - 2 t + P))/(4 t)) Sqrt[1 + P]);
ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n];
Table[If[n == 1, {1, 0}, CoefficientList[cx[n], t]], {n, 0, 8}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 01 2021
STATUS
approved