The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343808 Partial sums of A062074. 2
 0, 3, 75, 804, 5988, 36363, 193827, 943968, 4303200, 18652107, 77701107, 313483764, 1231813812, 4734541443, 17859008379, 66286569504, 242605938720, 877071559539, 3136507851387, 11108459253540, 39002734461540, 135876065474523, 470021588191155, 1615461644979264 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (13,-66,162,-189,81). FORMULA a(n) = Sum_{k=0..n} 3^k*k^3. a(n) = Sum_{k=0..n} A062074(k). G.f.: 3*x*(1 + 12*x + 9*x^2)/((1 - 3*x)^4*(1 - x)). - Stefano Spezia, May 01 2021 a(n) = ((4*n^3-6*n^2+12*n-11)*3^(n+1) + 33) / 8. - Kevin Ryde, May 01 2021 E.g.f.: (3/8)*(11*exp(x) + (-11 + 30*x + 54*x^2 + 108*x^3)*exp(3*x)). - G. C. Greubel, May 18 2022 a(n) = 13*a(n-1) - 66*a(n-2) + 162*a(n-3) - 189*a(n-4) + 81*a(n-5). - Wesley Ivan Hurt, Apr 16 2023 EXAMPLE a(3) = 1^3*3^1+2^3*3^2+3^3*3^3 = 3+8*9+27*27 = 804. MATHEMATICA CoefficientList[Series[3x(1 +12x +9x^2)/((1-3x)^4*(1-x)), {x, 0, 23}], x] (* Michael De Vlieger, May 01 2021 *) PROG (PARI) a(n) = sum(k=0, n, 3^k*k^3); \\ Michel Marcus, Apr 30 2021 (PARI) a(n) = ((((n<<2 - 6)*n + 12)*n - 11)*3^(n+1) + 33) >> 3; \\ Kevin Ryde, May 01 2021 (SageMath) [((4*n^3-6*n^2+12*n-11)*3^(n+1) +33)/8 for n in (0..30)] # G. C. Greubel, May 18 2022 CROSSREFS Cf. A036827, A062074. Sequence in context: A265956 A189805 A230145 * A125520 A163131 A060869 Adjacent sequences: A343805 A343806 A343807 * A343809 A343810 A343811 KEYWORD nonn,easy AUTHOR Sebastian Krüger, Apr 30 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 09:21 EDT 2024. Contains 373568 sequences. (Running on oeis4.)