login
A343805
T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.
3
1, 1, 1, 1, 4, 7, 1, 9, 39, 87, 1, 16, 126, 608, 1553, 1, 25, 310, 2470, 12985, 36145, 1, 36, 645, 7560, 62595, 351252, 1037367, 1, 49, 1197, 19285, 225715, 1946259, 11481631, 35402983, 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097
OFFSET
0,5
COMMENTS
The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type B. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163).
LINKS
Federico Ardila, Matthias Beck, and Jodi McWhirter, The arithmetic of Coxeter permutahedra, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(173):1152-1166, 2020.
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 4, 7;
[3] 1, 9, 39, 87;
[4] 1, 16, 126, 608, 1553;
[5] 1, 25, 310, 2470, 12985, 36145;
[6] 1, 36, 645, 7560, 62595, 351252, 1037367;
[7] 1, 49, 1197, 19285, 225715, 1946259, 11481631, 35402983;
[8] 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097;
MAPLE
alias(W = LambertW):
EhrB := exp(-W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t))/sqrt(1+W(-2*t*x)):
ser := series(EhrB, x, 10): cx := n -> n!*coeff(ser, x, n):
T := n -> seq(coeff(cx(n), t, k), k=0..n): seq(T(n), n = 0..9);
MATHEMATICA
P := ProductLog[-2 t x]; gf := 1/(E^((P (2 + P))/(4 t)) Sqrt[1 + P]);
ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n];
Table[CoefficientList[cx[n], t], {n, 0, 8}] // Flatten
CROSSREFS
Cf. A138464 (type A), this sequence (type B), A343806 (type C), A343807 (type D).
Sequence in context: A371333 A019670 A093436 * A082169 A209634 A340584
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 01 2021
STATUS
approved