login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Motzkin excursions of length n with an odd number of humps and an even number of peaks.
5

%I #15 Aug 09 2019 13:06:48

%S 0,0,0,1,3,7,15,34,78,191,493,1324,3626,10032,27808,77045,213273,

%T 590475,1637117,4550836,12692866,35532414,99830094,281412535,

%U 795601139,2254966896,6405076658,18227600051,51960277037,148352016215,424186720927,1214602291322

%N Number of Motzkin excursions of length n with an odd number of humps and an even number of peaks.

%C A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0.

%C A peak is an occurrence of the pattern UD.

%C A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).

%C Thus every peak is also a hump.

%H Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/patterns2019.pdf">Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata</a>, Algorithmica (2019).

%F G.f.: -( 4*t^3 + sqrt((1-2*t-3*t^2)*(1-t)^2) + sqrt((1-t-4*t^3)*(1-t)^3) - sqrt((1+t^2)*(1-4*t+5*t^2)) - sqrt((1-2*t)*(1-2*t-t^2)*(1-t^2+2*t^3)) ) / (8*t^2*(1-t)).

%F a(n) ~ 3^(n + 3/2) / (8*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Aug 09 2019

%e For n = 5 the a(5) = 7 paths are UHHHD, UHHDH, HUHHD, HHUHD, HUHDH, UHDHH, UUHDD. In all these paths, 0 peaks and 1 hump.

%e For n = 0..6, we have only paths with 0 peaks and 1 hump.

%e For n=7, we have a(n)=34. Among them, 31 paths with 0 peaks and 1 hump, and 3 walks with 2 peaks and 3 humps: UDUDUHD, UDUHDUD, UHDUDUD.

%p b:= proc(x, y, t, p, h) option remember; `if`(y>x, 0, `if`(x=0,

%p `if`(p+1=h, 1, 0), `if`(y>0, b(x-1, y-1, 0, irem(p+

%p `if`(t=1, 1, 0), 2), irem(h+`if`(t=2, 1, 0), 2)), 0)+

%p b(x-1, y, `if`(t>0, 2, 0), p, h)+b(x-1, y+1, 1, p, h)))

%p end:

%p a:= n-> b(n, 0$4):

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Jul 04 2019

%t CoefficientList[Series[-(4 x^3 + Sqrt[(1 - 2 x - 3 x^2)(1 -x)^2] + Sqrt[(1 - x - 4 x^3) (1 - x)^3] - Sqrt[(1 + x^2) (1 - 4 x + 5 x^2)] - Sqrt[(1 - 2 x) (1 - 2 x - x^2) (1 - x^2 + 2 x^3)]) / (8 x^2 (1 - x)), {x, 0, 33}], x] (* _Vincenzo Librandi_, Jul 09 2019 *)

%Y Cf. A325923.

%K nonn

%O 0,5

%A _Andrei Asinowski_, Jul 04 2019