login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377552
E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)^2))^2.
2
1, 2, 10, 114, 2000, 47050, 1399452, 50386406, 2130643216, 103530094866, 5684985037460, 348165567064942, 23530146364469208, 1739586913373486138, 139658209205202262876, 12099843726478251739830, 1125274333255817053205792, 111809642081518362872011042, 11821367007844973309548419876
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377550.
a(n) = 2 * n! * Sum_{k=0..n} k^(n-k) * binomial(4*n-3*k+2,k)/( (4*n-3*k+2)*(n-k)! ).
PROG
(PARI) a(n) = 2*n!*sum(k=0, n, k^(n-k)*binomial(4*n-3*k+2, k)/((4*n-3*k+2)*(n-k)!));
CROSSREFS
Sequence in context: A317342 A226300 A223056 * A208782 A237749 A113089
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 31 2024
STATUS
approved