login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317342
O.g.f. A(x) satisfies: [x^n] 1/(1-x)^(n^2) / exp( n*A(x) ) = 0 for n >= 1.
5
1, 2, 10, 113, 2091, 53071, 1699097, 65414637, 2935593649, 150229832066, 8625636578142, 548722452568519, 38292095950421691, 2907573526178822138, 238606864933942697326, 21041901922349773004745, 1984311337163146655202793, 199256107170401946445319128, 21226198257061414084824564640, 2390892224585501751308482295221, 283921776093206079595272233555143
OFFSET
1,2
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
LINKS
FORMULA
a(n) ~ c * d^n * n! / n^2, where d = -4 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = 0.0711316736966... - Vaclav Kotesovec, Aug 10 2018
EXAMPLE
O.g.f.: A(x) = x + 2*x^2 + 10*x^3 + 113*x^4 + 2091*x^5 + 53071*x^6 + 1699097*x^7 + 65414637*x^8 + 2935593649*x^9 + 150229832066*x^10 + ...
such that [x^n] 1/(1-x)^(n^2) / exp( n*A(x) ) = 0 for n >= 1.
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in 1/(1-x)^(n^2) / exp( n*A(x) ) begins:
n=1: [1, 0, -3, -58, -2679, -249156, -38055995, -8542203342, ...];
n=2: [1, 2, 0, -128, -6328, -555552, -82280384, -18170728480, ...];
n=3: [1, 6, 33, 0, -11295, -1046358, -145984383, -31019236524, ...];
n=4: [1, 12, 144, 1520, 0, -1699104, -252074048, -50777317056, ...];
n=5: [1, 20, 405, 8050, 138665, 0, -387421475, -83789021650, ...];
n=6: [1, 30, 912, 27792, 824616, 21065184, 0, -124201808352, ...];
n=7: [1, 42, 1785, 76412, 3262497, 135099678, 4801008121, 0, ...];
n=8: [1, 56, 3168, 180640, 10339520, 588664512, 32441206912, 1531609302656, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 5*x^2/2! + 73*x^3/3! + 3025*x^4/4! + 267761*x^5/5! + 39973381*x^6/6! + 8864616265*x^7/7! + ... + A317341(n)*x^n/n! + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( 1/(1-x +x*O(x^#A))^(m^2) / Ser(A)^m )[m+1]/m ); polcoeff( log(Ser(A)), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2018
STATUS
approved