The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317342 O.g.f. A(x) satisfies: [x^n] 1/(1-x)^(n^2) / exp( n*A(x) ) = 0 for n >= 1. 5
 1, 2, 10, 113, 2091, 53071, 1699097, 65414637, 2935593649, 150229832066, 8625636578142, 548722452568519, 38292095950421691, 2907573526178822138, 238606864933942697326, 21041901922349773004745, 1984311337163146655202793, 199256107170401946445319128, 21226198257061414084824564640, 2390892224585501751308482295221, 283921776093206079595272233555143 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS It is remarkable that this sequence should consist entirely of integers. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..340 FORMULA a(n) ~ c * d^n * n! / n^2, where d = -4 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = 0.0711316736966... - Vaclav Kotesovec, Aug 10 2018 EXAMPLE O.g.f.: A(x) = x + 2*x^2 + 10*x^3 + 113*x^4 + 2091*x^5 + 53071*x^6 + 1699097*x^7 + 65414637*x^8 + 2935593649*x^9 + 150229832066*x^10 + ... such that [x^n] 1/(1-x)^(n^2) / exp( n*A(x) ) = 0 for n >= 1. ILLUSTRATION OF DEFINITION. The table of coefficients of x^k/k! in 1/(1-x)^(n^2) / exp( n*A(x) ) begins: n=1: [1, 0, -3, -58, -2679, -249156, -38055995, -8542203342, ...]; n=2: [1, 2, 0, -128, -6328, -555552, -82280384, -18170728480, ...]; n=3: [1, 6, 33, 0, -11295, -1046358, -145984383, -31019236524, ...]; n=4: [1, 12, 144, 1520, 0, -1699104, -252074048, -50777317056, ...]; n=5: [1, 20, 405, 8050, 138665, 0, -387421475, -83789021650, ...]; n=6: [1, 30, 912, 27792, 824616, 21065184, 0, -124201808352, ...]; n=7: [1, 42, 1785, 76412, 3262497, 135099678, 4801008121, 0, ...]; n=8: [1, 56, 3168, 180640, 10339520, 588664512, 32441206912, 1531609302656, 0, ...]; ... in which the coefficient of x^n in row n forms a diagonal of zeros. RELATED SERIES. exp(A(x)) = 1 + x + 5*x^2/2! + 73*x^3/3! + 3025*x^4/4! + 267761*x^5/5! + 39973381*x^6/6! + 8864616265*x^7/7! + ... + A317341(n)*x^n/n! + ... PROG (PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( 1/(1-x +x*O(x^#A))^(m^2) / Ser(A)^m )[m+1]/m ); polcoeff( log(Ser(A)), n)} for(n=1, 20, print1(a(n), ", ")) CROSSREFS Cf. A317341, A319833, A319835, A319836, A319832. Sequence in context: A136518 A168369 A363206 * A226300 A223056 A208782 Adjacent sequences: A317339 A317340 A317341 * A317343 A317344 A317345 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 02:13 EDT 2023. Contains 365812 sequences. (Running on oeis4.)