Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 14 2018 08:03:25
%S 1,2,10,113,2091,53071,1699097,65414637,2935593649,150229832066,
%T 8625636578142,548722452568519,38292095950421691,2907573526178822138,
%U 238606864933942697326,21041901922349773004745,1984311337163146655202793,199256107170401946445319128,21226198257061414084824564640,2390892224585501751308482295221,283921776093206079595272233555143
%N O.g.f. A(x) satisfies: [x^n] 1/(1-x)^(n^2) / exp( n*A(x) ) = 0 for n >= 1.
%C It is remarkable that this sequence should consist entirely of integers.
%H Vaclav Kotesovec, <a href="/A317342/b317342.txt">Table of n, a(n) for n = 1..340</a>
%F a(n) ~ c * d^n * n! / n^2, where d = -4 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = 0.0711316736966... - _Vaclav Kotesovec_, Aug 10 2018
%e O.g.f.: A(x) = x + 2*x^2 + 10*x^3 + 113*x^4 + 2091*x^5 + 53071*x^6 + 1699097*x^7 + 65414637*x^8 + 2935593649*x^9 + 150229832066*x^10 + ...
%e such that [x^n] 1/(1-x)^(n^2) / exp( n*A(x) ) = 0 for n >= 1.
%e ILLUSTRATION OF DEFINITION.
%e The table of coefficients of x^k/k! in 1/(1-x)^(n^2) / exp( n*A(x) ) begins:
%e n=1: [1, 0, -3, -58, -2679, -249156, -38055995, -8542203342, ...];
%e n=2: [1, 2, 0, -128, -6328, -555552, -82280384, -18170728480, ...];
%e n=3: [1, 6, 33, 0, -11295, -1046358, -145984383, -31019236524, ...];
%e n=4: [1, 12, 144, 1520, 0, -1699104, -252074048, -50777317056, ...];
%e n=5: [1, 20, 405, 8050, 138665, 0, -387421475, -83789021650, ...];
%e n=6: [1, 30, 912, 27792, 824616, 21065184, 0, -124201808352, ...];
%e n=7: [1, 42, 1785, 76412, 3262497, 135099678, 4801008121, 0, ...];
%e n=8: [1, 56, 3168, 180640, 10339520, 588664512, 32441206912, 1531609302656, 0, ...]; ...
%e in which the coefficient of x^n in row n forms a diagonal of zeros.
%e RELATED SERIES.
%e exp(A(x)) = 1 + x + 5*x^2/2! + 73*x^3/3! + 3025*x^4/4! + 267761*x^5/5! + 39973381*x^6/6! + 8864616265*x^7/7! + ... + A317341(n)*x^n/n! + ...
%o (PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( 1/(1-x +x*O(x^#A))^(m^2) / Ser(A)^m )[m+1]/m ); polcoeff( log(Ser(A)),n)}
%o for(n=1,20,print1(a(n),", "))
%Y Cf. A317341, A319833, A319835, A319836, A319832.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jul 26 2018