login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136518
a(n) = A027907(2^n, n), where A027907 = triangle of trinomial coefficients.
2
1, 2, 10, 112, 3620, 360096, 116950848, 129755798400, 507413158135840, 7132358041777380352, 364730093112968976177664, 68393665694364347188157159424, 47308574208170527265149009962117120
OFFSET
0,2
COMMENTS
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! =
Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b)
where F(x) = 1+x+x^2, q=2, m=1, b=0.
LINKS
FORMULA
a(n) = [x^n] (1 + x + x^2)^(2^n), the coefficient of x^n in (1 + x + x^2)^(2^n).
O.g.f.: A(x) = Sum_{n>=0} log(1 + 2^n*x + 4^n*x^2)^n / n!.
EXAMPLE
A(x) = 1 + 2*x + 10*x^2 + 112*x^3 + 3620*x^4 + 360096*x^5 + ...
A(x) = 1 + log(1 +2*x +4*x^2) + log(1 +4*x +16*x^2)^2/2! + log(1 +8*x +64*x^2)^3/3! + ...
MATHEMATICA
With[{m=40, f= 1 +2^j*x +4^j*x^2}, CoefficientList[Series[ Sum[Log[f]^j/j!, {j, 0, m+1}], {x, 0, m}], x]] (* G. C. Greubel, Jul 27 2023 *)
PROG
(PARI) a(n)=polcoeff((1+x+x^2+x*O(x^n))^(2^n), n)
(PARI) /* As coefficient x^n of Series: */ a(n)=polcoeff(sum(i=0, n, log(1+2^i*x+2^(2*i)*x^2 +x*O(x^n))^i/i!), n)
(Magma)
m:=40;
gf:= func< x | (&+[Log(1 +2^j*x +4^j*x^2)^j/Factorial(j): j in [0..m+1]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!( gf(x) )); // G. C. Greubel, Jul 27 2023
(SageMath)
m=40
def f(x): return sum( log(1 + 2^j*x + 4^j*x^2)^j/factorial(j) for j in range(m+2) )
def A136518_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A136518_list(m) # G. C. Greubel, Jul 27 2023
CROSSREFS
Sequence in context: A305854 A234296 A049505 * A168369 A363206 A317342
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 02 2008
STATUS
approved