|
|
A136518
|
|
a(n) = A027907(2^n, n), where A027907 = triangle of trinomial coefficients.
|
|
1
|
|
|
1, 2, 10, 112, 3620, 360096, 116950848, 129755798400, 507413158135840, 7132358041777380352, 364730093112968976177664, 68393665694364347188157159424, 47308574208170527265149009962117120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) = [x^n] (1 + x + x^2)^(2^n), the coefficient of x^n in (1 + x + x^2)^(2^n).
|
|
LINKS
|
|
|
FORMULA
|
O.g.f.: A(x) = Sum_{n>=0} log(1 + 2^n*x + 2^(2n)*x^2)^n / n!.
|
|
EXAMPLE
|
A(x) = 1 + 2x + 10x^2 + 112x^3 + 3620x^4 + 360096x^5 + ...
A(x) = 1 + log(1+2x+4x^2) + log(1+4x+16x^2)^2/2! + log(1+8x+64x^2)^3/3! +...
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! =
Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b)
where F(x) = 1+x+x^2, q=2, m=1, b=0.
|
|
PROG
|
(PARI) a(n)=polcoeff((1+x+x^2+x*O(x^n))^(2^n), n)
(PARI) /* As coefficient x^n of Series: */ a(n)=polcoeff(sum(i=0, n, log(1+2^i*x+2^(2*i)*x^2 +x*O(x^n))^i/i!), n)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|