OFFSET
1,3
COMMENTS
Narayana transform of A027656.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = Sum_{j=0..floor((n-1)/2)} ((j+1)/(2*j+1))*binomial(n, 2*j) * binomial(n-1, 2*j). - G. C. Greubel, Jul 27 2023
EXAMPLE
a(4) = 13 = (1, 6, 6, 1) dot (1, 0, 2, 0) = (1 + 0 + 12 + 0).
1; : 1;
1, 0; : 1;
1, 0, 2; : 3;
1, 0, 12, 0; : 13;
1, 0, 40, 0, 3; : 44;
1, 0, 100, 0, 45, 0; : 146;
1, 0, 210, 0, 315, 0, 4; : 530;
1, 0, 392, 0, 1470, 0, 112, 0; : 1975;
1, 0, 672, 0, 5292, 0, 1344, 0, 5; : 7314;
1, 0, 1080, 0, 15876, 0, 10080, 0, 225, 0 : 27262;
MATHEMATICA
A136520[n_]:= Sum[Binomial[n-1, 2*k]*Binomial[n, 2*k]*((k+1)/(2*k+1)), {k, 0, Floor[(n-1)/2]}];
Table[A136520[n], {n, 40}] (* G. C. Greubel, Jul 27 2023 *)
PROG
(Magma)
A136520:= func< n | (&+[((j+1)/(2*j+1))*Binomial(n, 2*j)*Binomial(n-1, 2*j): j in [0..Floor((n-1)/2)]]) >;
[A136520(n): n in [1..40]]; // G. C. Greubel, Jul 27 2023
(SageMath)
def A136520(n): return sum(((j+1)/(2*j+1))*binomial(n, 2*j)*binomial(n-1, 2*j) for j in range((n+1)//2))
[A136520(n) for n in range(1, 41)] # G. C. Greubel, Jul 27 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jan 02 2008
EXTENSIONS
Terms a(11) onward added by G. C. Greubel, Jul 27 2023
STATUS
approved