login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136523
Triangle T(n,k) = A053120(n,k) + A053120(n-1,k), read by rows.
1
1, 1, 1, -1, 1, 2, -1, -3, 2, 4, 1, -3, -8, 4, 8, 1, 5, -8, -20, 8, 16, -1, 5, 18, -20, -48, 16, 32, -1, -7, 18, 56, -48, -112, 32, 64, 1, -7, -32, 56, 160, -112, -256, 64, 128, 1, 9, -32, -120, 160, 432, -256, -576, 128, 256, -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512
OFFSET
0,6
FORMULA
T(n, k) = A053120(n,k) + A053120(n-1,k).
Sum_{k=0..n} T(n, k) = A040000(n).
From G. C. Greubel, Jul 26 2023: (Start)
T(n, 0) = A057077(n).
T(n, 1) = (-1)^floor((n-1)/2) * A109613(n-1).
T(n, 2) = (-1)^floor((n-2)/2) * A008794(n-1).
T(n, 3) = (-1)^floor((n+1)/2) * A000330(n-1).
T(n, n) = A011782(n).
T(n, n-1) = A011782(n-1).
T(n, n-2) = -A001792(n-2).
T(n, n-4) = A001793(n-3).
T(n, n-6) = -A001794(n-6).
Sum_{k=0..n} (-1)^k*T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n) + [n=1].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^floor(n/2)*A025192(floor(n/2)). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
-1, 1, 2;
-1, -3, 2, 4;
1, -3, -8, 4, 8;
1, 5, -8, -20, 8, 16;
-1, 5, 18, -20, -48, 16, 32;
-1, -7, 18, 56, -48, -112, 32, 64;
1, -7, -32, 56, 160, -112, -256, 64, 128;
1, 9, -32, -120, 160, 432, -256, -576, 128, 256;
-1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512;
MATHEMATICA
A053120[n_, k_]:= Coefficient[ChebyshevT[n, x], x, k];
T[n_, k_]:= T[n, k]= A053120[n, k] + A053120[n-1, k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma)
function A053120(n, k)
if ((n+k) mod 2) eq 1 then return 0;
elif n eq 0 then return 1;
else return (-1)^Floor((n-k)/2)*(n/(n+k))*Binomial(Floor((n+k)/2), k)*2^k;
end if;
end function;
A136523:= func< n, k | A053120(n, k) + A053120(n-1, k) >;
[A136523(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 26 2023
(SageMath)
def A053120(n, k):
if (n+k)%2==1: return 0
elif n==0: return 1
else: return floor((-1)^((n-k)//2)*(n/(n+k))*binomial((n+k)//2, k)*2^k)
def A136523(n, k): return A053120(n, k) + A053120(n-1, k)
flatten([[A136523(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 26 2023
KEYWORD
easy,tabl,sign
AUTHOR
Roger L. Bagula, Mar 23 2008
EXTENSIONS
Edited by G. C. Greubel, Jul 26 2023
STATUS
approved