login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136523 Triangle T(n,k) = A053120(n,k)+A053120(n-1,k). 0
1, 1, 1, -1, 1, 2, -1, -3, 2, 4, 1, -3, -8, 4, 8, 1, 5, -8, -20, 8, 16, -1, 5, 18, -20, -48, 16, 32, -1, -7, 18, 56, -48, -112, 32, 64, 1, -7, -32, 56, 160, -112, -256, 64, 128, 1, 9, -32, -120, 160, 432, -256, -576, 128, 256, -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Row sums are A040000(n).

Gram-Schmidt vector analysis indicates this is orthogonal.

Integration of products of the associated polynomials p_n(x) = sum_{k>=0} T(n,k)*x^k with the Chebyshev weight function 1/sqrt(1-x^2) over the interval (-1..1) gives it is tridiagonal orthogonal:

Table[Table[Integrate[Sqrt[1/(1 - x^2)]*Q[x,n]*Q[x, m], {x, -1, 1}], {n, 0, 10}], {m, 0, 10}];

LINKS

Table of n, a(n) for n=0..65.

EXAMPLE

1;

1, 1;

-1, 1, 2;

-1, -3, 2, 4;

1, -3, -8, 4, 8;

1, 5, -8, -20, 8, 16;

-1, 5, 18, -20, -48, 16, 32;

-1, -7, 18, 56, -48, -112,32, 64;

1, -7, -32, 56,160, -112, -256, 64, 128;

1, 9, -32, -120, 160, 432, -256, -576, 128,256;

-1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512;

MATHEMATICA

Clear[B, x, n] (* A053120*) B[x, -1] = 0; B[x, 0] = 1; B[x, 1] = x; B[x_, n_] := B[x, n] = 2*x*B[x, n - 1] - B[x, n - 2]; Table[ExpandAll[B[x, n] + B[x, n - 1]], {n, 0, 10}]; a0 = Table[CoefficientList[B[x, n] + B[x, n - 1], x], {n, 0, 10}]; Flatten[a0] (* alternative definition*) Q[x, 0] = 1; Q[x, 1] = x + 1; Q[x_, n_] := Q[x, n] = B[x, n] + B[x, n - 1];

CROSSREFS

Cf. A053120, A081277, A124182.

Sequence in context: A007337 A167430 A056892 * A228731 A163507 A003963

Adjacent sequences:  A136520 A136521 A136522 * A136524 A136525 A136526

KEYWORD

easy,tabl,sign

AUTHOR

Roger L. Bagula, Mar 23 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 17:11 EST 2016. Contains 278679 sequences.