login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A027907(2^n, n), where A027907 = triangle of trinomial coefficients.
2

%I #12 Jul 28 2023 04:58:04

%S 1,2,10,112,3620,360096,116950848,129755798400,507413158135840,

%T 7132358041777380352,364730093112968976177664,

%U 68393665694364347188157159424,47308574208170527265149009962117120

%N a(n) = A027907(2^n, n), where A027907 = triangle of trinomial coefficients.

%C This is a special case of the more general statement:

%C Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! =

%C Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b)

%C where F(x) = 1+x+x^2, q=2, m=1, b=0.

%H G. C. Greubel, <a href="/A136518/b136518.txt">Table of n, a(n) for n = 0..59</a>

%F a(n) = [x^n] (1 + x + x^2)^(2^n), the coefficient of x^n in (1 + x + x^2)^(2^n).

%F O.g.f.: A(x) = Sum_{n>=0} log(1 + 2^n*x + 4^n*x^2)^n / n!.

%e A(x) = 1 + 2*x + 10*x^2 + 112*x^3 + 3620*x^4 + 360096*x^5 + ...

%e A(x) = 1 + log(1 +2*x +4*x^2) + log(1 +4*x +16*x^2)^2/2! + log(1 +8*x +64*x^2)^3/3! + ...

%t With[{m=40, f= 1 +2^j*x +4^j*x^2}, CoefficientList[Series[ Sum[Log[f]^j/j!, {j,0,m+1}], {x,0,m}], x]] (* _G. C. Greubel_, Jul 27 2023 *)

%o (PARI) a(n)=polcoeff((1+x+x^2+x*O(x^n))^(2^n),n)

%o (PARI) /* As coefficient x^n of Series: */ a(n)=polcoeff(sum(i=0,n,log(1+2^i*x+2^(2*i)*x^2 +x*O(x^n))^i/i!),n)

%o (Magma)

%o m:=40;

%o gf:= func< x | (&+[Log(1 +2^j*x +4^j*x^2)^j/Factorial(j): j in [0..m+1]]) >;

%o R<x>:=PowerSeriesRing(Rationals(), m);

%o Coefficients(R!( gf(x) )); // _G. C. Greubel_, Jul 27 2023

%o (SageMath)

%o m=40

%o def f(x): return sum( log(1 + 2^j*x + 4^j*x^2)^j/factorial(j) for j in range(m+2) )

%o def A136518_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( f(x) ).list()

%o A136518_list(m) # _G. C. Greubel_, Jul 27 2023

%Y Cf. A027907, A136519.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 02 2008