login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317341
E.g.f. A(x) satisfies: [x^n] 1/(1-x)^(n^2) / A(x)^n = 0 for n >= 1.
2
1, 1, 5, 73, 3025, 267761, 39973381, 8864616265, 2712723956993, 1090880803227745, 556508515320800101, 350642617901691170441, 267174141889391279470225, 242012057463863136292454353, 256946945274110281614185744165, 315958380772526173969828356406921, 445411627825937393526248850060842881, 713506179952629917462979541328787054785
OFFSET
0,3
COMMENTS
It is remarkable that the logarithm of the e.g.f. A(x) is an integer series.
LINKS
FORMULA
a(n) ~ c * d^n * (n!)^2 / n^2, where d = -4 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = 0.0711316736966... - Vaclav Kotesovec, Aug 10 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 73*x^3/3! + 3025*x^4/4! + 267761*x^5/5! + 39973381*x^6/6! + 8864616265*x^7/7! + 2712723956993*x^8/8! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in 1/(1-x)^(n^2) / A(x)^n begins:
n=1: [1, 0, -3, -58, -2679, -249156, -38055995, -8542203342, ...];
n=2: [1, 2, 0, -128, -6328, -555552, -82280384, -18170728480, ...];
n=3: [1, 6, 33, 0, -11295, -1046358, -145984383, -31019236524, ...];
n=4: [1, 12, 144, 1520, 0, -1699104, -252074048, -50777317056, ...];
n=5: [1, 20, 405, 8050, 138665, 0, -387421475, -83789021650, ...];
n=6: [1, 30, 912, 27792, 824616, 21065184, 0, -124201808352, ...];
n=7: [1, 42, 1785, 76412, 3262497, 135099678, 4801008121, 0, ...];
n=8: [1, 56, 3168, 180640, 10339520, 588664512, 32441206912, 1531609302656, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 2*x^2 + 10*x^3 + 113*x^4 + 2091*x^5 + 53071*x^6 + 1699097*x^7 + 65414637*x^8 + 2935593649*x^9 + 150229832066*x^10 + ... + A317342(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( 1/(1-x +x*O(x^#A))^(m^2) / Ser(A)^m )[m+1]/m ); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A317342.
Sequence in context: A355122 A370542 A334282 * A012640 A353042 A128889
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2018
STATUS
approved