|
|
A079523
|
|
Utterly odd numbers: numbers whose binary representation ends in an odd number of ones.
|
|
33
|
|
|
1, 5, 7, 9, 13, 17, 21, 23, 25, 29, 31, 33, 37, 39, 41, 45, 49, 53, 55, 57, 61, 65, 69, 71, 73, 77, 81, 85, 87, 89, 93, 95, 97, 101, 103, 105, 109, 113, 117, 119, 121, 125, 127, 129, 133, 135, 137, 141, 145, 149, 151, 153, 157, 159, 161, 165, 167, 169, 173, 177, 181
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also, n such that A010060(n) = A010060(n+1) where A010060 is the Thue-Morse sequence.
Sequence of n such that a(n) = 3n begins 7, 23, 27, 29, 31, 39, 71, 87, 91, 93, 95, ...
Values of k such that the Motzkin number A001006(2k) is even. Values of k such that the number of restricted hexagonal polyominoes with 2k+1 cells is even (see A002212). Values of k such that the number of directed animals of size k+1 is even (see A005773). Values of k such that the Riordan number A005043(k) is even. - Emeric Deutsch and Bruce E. Sagan, Apr 02 2003
a(n) = A036554(n)-1 = A072939(n)-2. - Ralf Stephan, Jun 09 2003
Odious and evil terms alternate. - Vladimir Shevelev, Jun 22 2009
The sequence has the following fractal property: remove terms of the form 4k+1 from the sequence, and the remaining terms are of the form 4k+3: 7, 23, 31, 39, 55, 71, 87, ...; then subtract 3 from each of these terms and divide by 4 and you get the original sequence: 1, 5, 7, 9, 13, ... - Benoit Cloitre, Apr 06 2010
A035263(a(n)) = 0. - Reinhard Zumkeller, Mar 01 2012
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
J.-P. Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, arXiv preprint arXiv:1401.3727 [math.NT], 2014.
J.-P. Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388.
J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, Simon Plouffe, B. E. Sagan, A relative of the Thue-Morse sequence, Discrete Math., 139, 1995, 455-461.
Narad Rampersad, Manon Stipulanti, The Formal Inverse of the Period-Doubling Sequence, arXiv:1807.11899 [math.CO], 2018.
Thomas Zaslavsky, Anti-Fibonacci Numbers: A Formula, Sep 26 2016 [Introduces the name "utterly odd". - N. J. A. Sloane, Sep 27 2016]
Index entries for 2-automatic sequences.
|
|
FORMULA
|
a(n) is asymptotic to 3n.
a(n) = 2*A003159(n) - 1. a(1)=1, a(n) = a(n-1) + 2 if (a(n-1)+1)/2 does not belong to the sequence and a(n)=a(n-1)+4 otherwise. - Emeric Deutsch and Bruce E. Sagan, Apr 02 2003
a(n) = (1/2)A081706(2n-1).
a(n) = A003158(n) - n = A003157(n) - n - 1. - Philippe Deléham, Feb 22 2004
Values of k such that A091297(k) = 0. - Philippe Deléham, Feb 25 2004
|
|
MATHEMATICA
|
Select[ Range[200], MatchQ[ IntegerDigits[#, 2], {b : (1) ..} | {___, 0, b : (1) ..} /; OddQ[ Length[{b}]]] & ] (* Jean-François Alcover, Jun 17 2013 *)
|
|
PROG
|
(Haskell)
import Data.List (elemIndices)
a079523 n = a079523_list !! (n-1)
a079523_list = elemIndices 0 a035263_list
-- Reinhard Zumkeller, Mar 01 2012
(PARI) is(n)=valuation(n+1, 2)%2 \\ Charles R Greathouse IV, Mar 07 2013
(MAGMA) [n: n in [0..200] | Valuation(n+1, 2) mod 2 eq 0 + 1]; // Vincenzo Librandi, Apr 16 2015
|
|
CROSSREFS
|
Cf. A003159, A003157, A003158, A075326, A131323.
Sequence in context: A284742 A111083 A050550 * A231271 A039504 A097280
Adjacent sequences: A079520 A079521 A079522 * A079524 A079525 A079526
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Benoit Cloitre, Jan 21 2003
|
|
STATUS
|
approved
|
|
|
|