login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375546
Triangle read by rows: T(n, k) = Sum_{d|n} d * A375467(d, k) for n > 0, T(0, 0) = 1.
1
1, 0, 1, 0, 1, 3, 0, 1, 4, 7, 0, 1, 7, 15, 19, 0, 1, 6, 26, 41, 46, 0, 1, 12, 51, 99, 123, 129, 0, 1, 8, 78, 204, 295, 330, 337, 0, 1, 15, 135, 443, 731, 883, 931, 939, 0, 1, 13, 205, 889, 1726, 2275, 2509, 2572, 2581, 0, 1, 18, 328, 1813, 4068, 5868, 6808, 7148, 7228, 7238
OFFSET
0,6
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 1, 4, 7;
[4] 0, 1, 7, 15, 19;
[5] 0, 1, 6, 26, 41, 46;
[6] 0, 1, 12, 51, 99, 123, 129;
[7] 0, 1, 8, 78, 204, 295, 330, 337;
[8] 0, 1, 15, 135, 443, 731, 883, 931, 939;
[9] 0, 1, 13, 205, 889, 1726, 2275, 2509, 2572, 2581;
MAPLE
div := n -> numtheory:-divisors(n):
T := proc(n, k) option remember; local d; if n = 0 then 1 else
add(d * A375467(d, k), d = div(n)) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..10):
PROG
(Python)
from functools import cache
@cache
def divisors(n):
return [d for d in range(n, 0, -1) if n % d == 0]
@cache
def T(n, k):
return sum(d * r(d, k) for d in divisors(n)) if n > 0 else 1
@cache
def r(n, k):
if n == 1: return int(k > 0)
return sum(r(i, k) * T(n - i, k - 1) for i in range(1, n)) // (n - 1)
for n in range(9): print([T(n, k) for k in range(n + 1)])
CROSSREFS
Cf. A375467, A000203 (column 2), A209397 (main diagonal), A375547 (row sums).
Sequence in context: A139601 A213191 A352449 * A079520 A229001 A208981
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 15 2024
STATUS
approved