login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229001 Total sum A(n,k) of the k-th powers of lengths of ascending runs in all permutations of [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
0, 0, 1, 0, 1, 3, 0, 1, 4, 12, 0, 1, 6, 18, 60, 0, 1, 10, 32, 96, 360, 0, 1, 18, 66, 186, 600, 2520, 0, 1, 34, 152, 426, 1222, 4320, 20160, 0, 1, 66, 378, 1110, 2964, 9086, 35280, 181440, 0, 1, 130, 992, 3186, 8254, 22818, 75882, 322560, 1814400 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

A(n,k) = Sum_{t=1..n} t^k * A122843(n,t).

For fixed k, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j)*C(k,j)))*exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. - Vaclav Kotesovec, Sep 12 2013

EXAMPLE

A(3,2) = 32 = 9+5+5+5+5+3 = 3^2+4*(2^2+1^2)+3*1^2: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).

Square array A(n,k) begins:

:    0,    0,    0,     0,     0,      0,      0, ...

:    1,    1,    1,     1,     1,      1,      1, ...

:    3,    4,    6,    10,    18,     34,     66, ...

:   12,   18,   32,    66,   152,    378,    992, ...

:   60,   96,  186,   426,  1110,   3186,   9846, ...

:  360,  600, 1222,  2964,  8254,  25620,  86782, ...

: 2520, 4320, 9086, 22818, 66050, 214410, 765506, ...

MAPLE

A:= (n, k)-> add(`if`(n=t, 1, n!/(t+1)!*(t*(n-t+1)+1

             -((t+1)*(n-t)+1)/(t+2)))*t^k, t=1..n):

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

A[n_, k_] := Sum[If[n == t, 1, n!/(t + 1)!*(t*(n - t + 1) + 1 - ((t + 1)*(n - t) + 1)/(t + 2))]* t^k, {t, 1, n}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-Fran├žois Alcover, Dec 27 2013, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A001710(n+1) for n>0, A001563, A228959, A229003, A228994, A228995, A228996, A228997, A228998, A228999, A229000.

Rows n=0-2 give: A000004, A000012, A052548.

Main diagonal gives: A229002.

Sequence in context: A139601 A213191 A079520 * A208981 A261158 A207543

Adjacent sequences:  A228998 A228999 A229000 * A229002 A229003 A229004

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 22:18 EDT 2021. Contains 343957 sequences. (Running on oeis4.)