login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228959 Total sum of squared lengths of ascending runs in all permutations of [n]. 3
0, 1, 6, 32, 186, 1222, 9086, 75882, 705298, 7231862, 81160422, 990024466, 13047411482, 184788881838, 2799459801742, 45178128866282, 773829771302946, 14021761172671462, 267991492197471158, 5388234382450264002, 113692608262971520042, 2512031106415692960926 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (2*exp(x)-x-2)/(x-1)^2.
a(n) = (2*n+1)*a(n-1)-(n-1)*((n+2)*a(n-2)-(n-2)*a(n-3)) for n>=3, a(n) = n*(2*n-1) for n<3.
a(n) ~ n! * (2*exp(1)-3)*n. - Vaclav Kotesovec, Sep 12 2013
EXAMPLE
a(0) = 0: ().
a(1) = 1: (1).
a(2) = 6 = 4+2: (1,2), (2,1).
a(3) = 32 = 9+5+5+5+5+3: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
MAPLE
a:= proc(n) option remember; `if`(n<3, n*(2*n-1),
(2*n+1)*a(n-1) -(n-1)*((n+2)*a(n-2)-(n-2)*a(n-3)))
end:
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := With[{k = 2}, Sum[If[n==t, 1, (n!/(t+1)!)(t(n-t+1)+1-((t+1)(n-t)+1)/(t+2))] t^k, {t, 1, n}]];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz in A229001 *)
CROSSREFS
Column k=2 of A229001.
Sequence in context: A259621 A026993 A238115 * A302734 A319228 A216441
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 09 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 04:56 EST 2023. Contains 367629 sequences. (Running on oeis4.)