login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228959
Total sum of squared lengths of ascending runs in all permutations of [n].
3
0, 1, 6, 32, 186, 1222, 9086, 75882, 705298, 7231862, 81160422, 990024466, 13047411482, 184788881838, 2799459801742, 45178128866282, 773829771302946, 14021761172671462, 267991492197471158, 5388234382450264002, 113692608262971520042, 2512031106415692960926
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (2*exp(x)-x-2)/(x-1)^2.
a(n) = (2*n+1)*a(n-1)-(n-1)*((n+2)*a(n-2)-(n-2)*a(n-3)) for n>=3, a(n) = n*(2*n-1) for n<3.
a(n) ~ n! * (2*exp(1)-3)*n. - Vaclav Kotesovec, Sep 12 2013
EXAMPLE
a(0) = 0: ().
a(1) = 1: (1).
a(2) = 6 = 4+2: (1,2), (2,1).
a(3) = 32 = 9+5+5+5+5+3: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
MAPLE
a:= proc(n) option remember; `if`(n<3, n*(2*n-1),
(2*n+1)*a(n-1) -(n-1)*((n+2)*a(n-2)-(n-2)*a(n-3)))
end:
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := With[{k = 2}, Sum[If[n==t, 1, (n!/(t+1)!)(t(n-t+1)+1-((t+1)(n-t)+1)/(t+2))] t^k, {t, 1, n}]];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz in A229001 *)
CROSSREFS
Column k=2 of A229001.
Sequence in context: A259621 A026993 A238115 * A302734 A319228 A216441
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 09 2013
STATUS
approved