login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238115
Number of states arising in matrix method for enumerating Hamiltonian cycles on a 2n X 2n grid.
4
1, 6, 32, 182, 1117, 7280, 49625, 349998, 2535077, 18758264, 141254654, 1079364104, 8350678169, 65298467486, 515349097712, 4100346740510, 32858696386765, 265001681344568, 2149447880547398, 17524254766905368, 143540915998174577, 1180736721910617182
OFFSET
1,2
LINKS
Ed Wynn, Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs, arXiv preprint arXiv:1402.0545 [math.CO], 2014.
FORMULA
From Andrew Howroyd, Dec 13 2024: (Start)
a(n) = Sum_{k=1..n} binomial(n,k)^2 * A000108(k).
a(n) = A086618(n) - 1. (End)
MAPLE
a := n -> hypergeom([1/2, -n, -n], [1, 2], 4) - 1:
seq(simplify(a(n)), n = 1..22); # Peter Luschny, Dec 13 2024
PROG
(PARI) a(n)=sum(k=1, n, binomial(n, k)^2*binomial(2*k, k)/(k+1)) \\ Andrew Howroyd, Dec 13 2024
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Mar 05 2014
STATUS
approved