login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total sum of squared lengths of ascending runs in all permutations of [n].
3

%I #17 Dec 20 2020 07:31:15

%S 0,1,6,32,186,1222,9086,75882,705298,7231862,81160422,990024466,

%T 13047411482,184788881838,2799459801742,45178128866282,

%U 773829771302946,14021761172671462,267991492197471158,5388234382450264002,113692608262971520042,2512031106415692960926

%N Total sum of squared lengths of ascending runs in all permutations of [n].

%H Alois P. Heinz, <a href="/A228959/b228959.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f.: (2*exp(x)-x-2)/(x-1)^2.

%F a(n) = (2*n+1)*a(n-1)-(n-1)*((n+2)*a(n-2)-(n-2)*a(n-3)) for n>=3, a(n) = n*(2*n-1) for n<3.

%F a(n) ~ n! * (2*exp(1)-3)*n. - _Vaclav Kotesovec_, Sep 12 2013

%e a(0) = 0: ().

%e a(1) = 1: (1).

%e a(2) = 6 = 4+2: (1,2), (2,1).

%e a(3) = 32 = 9+5+5+5+5+3: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).

%p a:= proc(n) option remember; `if`(n<3, n*(2*n-1),

%p (2*n+1)*a(n-1) -(n-1)*((n+2)*a(n-2)-(n-2)*a(n-3)))

%p end:

%p seq(a(n), n=0..30);

%t a[n_] := With[{k = 2}, Sum[If[n==t, 1, (n!/(t+1)!)(t(n-t+1)+1-((t+1)(n-t)+1)/(t+2))] t^k, {t, 1, n}]];

%t a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ in A229001 *)

%Y Column k=2 of A229001.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 09 2013