login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357892
T(n,k) are the values of a variant of the Chebyshev polynomials P(n,x) of order n evaluated at x = k, where T(n,k), n >= 0, k <= n is a triangle read by rows. P(0,x) = 1, P(1,x) = x, P(n,x) = x*P(n-1,x) - P(n-2,x).
0
1, 0, 1, -1, 0, 3, 0, -1, 4, 21, 1, -1, 5, 55, 209, 0, 0, 6, 144, 780, 2640, -1, 1, 7, 377, 2911, 12649, 40391, 0, 1, 8, 987, 10864, 60605, 235416, 726103, 1, 0, 9, 2584, 40545, 290376, 1372105, 4976784, 15003009, 0, -1, 10, 6765, 151316, 1391275, 7997214, 34111385, 118118440, 350382231
OFFSET
0,6
EXAMPLE
The triangle begins:
1;
0, 1;
-1, 0, 3;
0, -1, 4, 21;
1, -1, 5, 55, 209;
0, 0, 6, 144, 780, 2640;
-1, 1, 7, 377, 2911, 12649, 40391;
0, 1, 8, 987, 10864, 60605, 235416, 726103
PROG
(PARI) chp(k, x) = if(k==0, 1, if(k==1, x, x*chp(k-1, x) - chp(k-2, x)));
for (k=0, 9, for(x=0, k, print1(ch(k, x), ", ")); print())
CROSSREFS
Cf. A001353 (column 4), A001906 (column 3), A097690 (diagonal).
Sequence in context: A079520 A229001 A208981 * A261158 A207543 A191532
KEYWORD
sign,tabl
AUTHOR
Hugo Pfoertner, Oct 18 2022
STATUS
approved