The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357894 Integers k such that the sum of some number of initial decimal digits of sqrt(k) is equal to k. 0
 0, 1, 6, 10, 14, 18, 27, 33, 41, 43, 46, 55, 56, 62, 66, 69, 70, 77, 80, 87, 93, 98, 102, 108, 110, 123, 124, 145, 147, 149, 150, 154, 157, 162, 164, 165, 168, 176, 177, 179, 180, 182, 183, 197, 204, 213, 214, 219, 224, 236, 237, 242, 248, 251, 252, 261, 262, 263, 271, 274, 285, 295 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For integers k that are squares of integers, "Sum of initial digits" includes digits to the left of the decimal point only, as there are no digits other than zero to the right of the decimal point. This constraint contributes terms 0 and 1 to the sequence. For integers k with irrational sqrt(k), "Sum of initial digits" includes digits to the left of the decimal point and to the right of the decimal point. "Initial digits" implies a sufficient number of digits to produce either a sum > k or a sum = k condition, halting at whichever condition occurs first (sum > k condition is discarded). LINKS Table of n, a(n) for n=1..62. EXAMPLE 41 is a term because sqrt(41) = 6.4031242374328... and 6+4+0+3+1+2+4+2+3+7+4+3+2 = 41. 42 is not a term because sqrt(42) = 6.480740698407860... and 6+4+8+0+7+4+0+6 = 35 and 6+4+8+0+7+4+0+6+9 = 44 (no sum of initial digits = 42). 144 is not a term because sqrt(144) = 12 (no digits to the right of the decimal), and 1+2 is not equal to 144. PROG (PARI) is(n) = { my (d=digits(sqrtint(n)), s=0); for (i=1, #d, s+=d[i]; if (s==n, return (1), s>n, return (0); ); ); if (issquare(n), return (n==0); ); my (n0=n); while (1, s+=sqrtint(n0*=100)%10; if (s==n, return (1), s>n, return (0); ); ); } \\ Rémy Sigrist, Oct 19 2022 CROSSREFS Cf. A106039. Sequence in context: A007944 A290266 A200269 * A315192 A315193 A284675 Adjacent sequences: A357891 A357892 A357893 * A357895 A357896 A357897 KEYWORD nonn,base AUTHOR Gil Broussard, Oct 18 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 17:30 EDT 2023. Contains 363042 sequences. (Running on oeis4.)