The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007944 a(n) is the largest even number k such that 6, 8, ..., k are sums of 2 of first n odd primes. 4
 6, 10, 14, 18, 26, 30, 38, 42, 42, 54, 62, 74, 74, 90, 90, 90, 108, 114, 114, 134, 134, 146, 162, 172, 180, 186, 186, 218, 222, 230, 240, 240, 254, 258, 270, 270, 290, 290, 290, 330, 348, 348, 366, 366, 366, 398, 398, 410, 410, 434, 440, 440, 474, 474, 474, 474, 474, 522 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. See page 20. K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy] See page 20. F. Smarandache, Only Problems, Not Solutions! FORMULA a(n) << n log n. - Charles R Greathouse IV, Sep 19 2012 More specifically, a(n) <= 2*prime(n+1). On the Goldbach conjecture a(n) >= prime(n+1) + 3. - Charles R Greathouse IV, Dec 09 2014 PROG (PARI) first(n) = {n+=3; my(fnf = 6, pr = primes(n), found = vector(pr[n]), res = vector(n-3), start = 2); for(i = 2, n-2, for(j = start, i, found[(pr[i]+pr[j])>>1] = 1); for(j = fnf>>1, pr[n], if(found[j]==0, fnf = j<<1; break)); while(pr[start] + pr[i+1]fnf, start--); res[i-1]=fnf-2); res \\ David A. Corneth, Jul 06 2017 CROSSREFS Sequence in context: A315189 A315190 A315191 * A290266 A200269 A357894 Adjacent sequences: A007941 A007942 A007943 * A007945 A007946 A007947 KEYWORD nonn,easy AUTHOR R. Muller EXTENSIONS More terms from David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 07:58 EDT 2023. Contains 365519 sequences. (Running on oeis4.)