login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007944 a(n) is the largest even number k such that 6, 8, ..., k are sums of 2 of first n odd primes. 4
6, 10, 14, 18, 26, 30, 38, 42, 42, 54, 62, 74, 74, 90, 90, 90, 108, 114, 114, 134, 134, 146, 162, 172, 180, 186, 186, 218, 222, 230, 240, 240, 254, 258, 270, 270, 290, 290, 290, 330, 348, 348, 366, 366, 366, 398, 398, 410, 410, 434, 440, 440, 474, 474, 474, 474, 474, 522 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

David A. Corneth, Table of n, a(n) for n = 1..10000

K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. See page 20.

K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy] See page 20.

F. Smarandache, Only Problems, Not Solutions!

FORMULA

a(n) << n log n. - Charles R Greathouse IV, Sep 19 2012

More specifically, a(n) <= 2*prime(n+1). On the Goldbach conjecture a(n) >= prime(n+1) + 3. - Charles R Greathouse IV, Dec 09 2014

PROG

(PARI) first(n) = {n+=3; my(fnf = 6, pr = primes(n), found = vector(pr[n]), res = vector(n-3), start = 2); for(i = 2, n-2, for(j = start, i, found[(pr[i]+pr[j])>>1] = 1); for(j = fnf>>1, pr[n], if(found[j]==0, fnf = j<<1; break)); while(pr[start] + pr[i+1]<fnf, start++); while(pr[start]+pr[i+1]>fnf, start--); res[i-1]=fnf-2); res \\ David A. Corneth, Jul 06 2017

CROSSREFS

Sequence in context: A315189 A315190 A315191 * A290266 A200269 A357894

Adjacent sequences: A007941 A007942 A007943 * A007945 A007946 A007947

KEYWORD

nonn,easy

AUTHOR

R. Muller

EXTENSIONS

More terms from David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 2 02:53 EDT 2023. Contains 361723 sequences. (Running on oeis4.)