login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007944 a(n) is the largest even number k such that 6, 8, ..., k are sums of 2 of first n odd primes. 4
6, 10, 14, 18, 26, 30, 38, 42, 42, 54, 62, 74, 74, 90, 90, 90, 108, 114, 114, 134, 134, 146, 162, 172, 180, 186, 186, 218, 222, 230, 240, 240, 254, 258, 270, 270, 290, 290, 290, 330, 348, 348, 366, 366, 366, 398, 398, 410, 410, 434, 440, 440, 474, 474, 474, 474, 474, 522 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

David A. Corneth, Table of n, a(n) for n = 1..10000

K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. See page 20.

K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, 1996, 50 pages. [Cached copy] See page 20.

F. Smarandache, Only Problems, Not Solutions!

FORMULA

a(n) << n log n. - Charles R Greathouse IV, Sep 19 2012

More specifically, a(n) <= 2*prime(n+1). On the Goldbach conjecture a(n) >= prime(n+1) + 3. - Charles R Greathouse IV, Dec 09 2014

PROG

(PARI) first(n) = {n+=3; my(fnf = 6, pr = primes(n), found = vector(pr[n]), res = vector(n-3), start = 2); for(i = 2, n-2, for(j = start, i, found[(pr[i]+pr[j])>>1] = 1); for(j = fnf>>1, pr[n], if(found[j]==0, fnf = j<<1; break)); while(pr[start] + pr[i+1]<fnf, start++); while(pr[start]+pr[i+1]>fnf, start--); res[i-1]=fnf-2); res \\ David A. Corneth, Jul 06 2017

CROSSREFS

Sequence in context: A315189 A315190 A315191 * A290266 A200269 A315192

Adjacent sequences:  A007941 A007942 A007943 * A007945 A007946 A007947

KEYWORD

nonn,easy

AUTHOR

R. Muller

EXTENSIONS

More terms from David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 12:06 EDT 2021. Contains 347616 sequences. (Running on oeis4.)