|
|
A007943
|
|
Concatenation of sequence (1,3,..,2n-1,2n,2n-2,..,2).
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
M. Le, Perfect Powers in the Smarandache Permutation Sequence, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, 148-149.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a1 + a2 + a3 where a1 = floor(a(n-1)/10^d)*10^floor(1 + log_10(a2)), a2 = ((2*n-1)*10^floor(1 + log_10(2*n)) + 2*n)*10^floor(1 + log_10(a3)), a3 = a(n-1) - floor(a(n-1)/10^d)*10^floor(d), d = (floor(1 + log_10(a(n-1))) + (1 + (-1)^floor(1 + log_10(2*(n-1))))/2)/2 + w, w = (floor(1 + log_10(2*n-1)) - 1 - (1 - (-1)^(floor(1 + log_10(2*n-1)) - 1))/2)/2. - Paolo P. Lava, Jun 17 2008
|
|
MAPLE
|
P:=proc(n) local a, a1, a2, a3, d, i, w; a:=12; print(a); for i from 2 by 1 to n do w:=(floor(evalf(1+log10(2*i-1), 1000))-1-(1-(-1)^(floor(evalf(1+log10(2*i-1), 1000))-1))/2)/2; d:=(floor(evalf(1+log10(a), 1000))+(1+(-1)^floor(evalf(1+log10(2*(i-1)), 1000)))/2)/2+w; a3:=a-floor(evalf(a/(10^d), 1000))*10^floor(evalf(d, 1000)); a2:=((2*i-1)*10^floor(evalf(1+log10(2*i), 1000))+2*i)*10^floor(evalf(1+log10(a3), 1000)); a1:=floor(evalf(a/(10^d), 1000))*10^floor(evalf(1+log10(a2), 1000)); a:=a1+a2+a3; print(a); od; end: P(1000); # Paolo P. Lava, Jun 17 2008
|
|
MATHEMATICA
|
Table[FromDigits[Join[Flatten[IntegerDigits/@Range[1, 2n+1, 2]], Flatten[ IntegerDigits/@ Range[2n+2, 2, -2]]]], {n, 0, 10}] (* Harvey P. Dale, Jul 30 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
R. Muller
|
|
STATUS
|
approved
|
|
|
|