login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209397 L.g.f.: Sum_{n>=1} a(n)*x^n/n  =  Sum_{n>=1} x^n/n * exp( Sum_{k>=1} a(k)*x^(n*k)/k ). 4
1, 3, 7, 19, 46, 129, 337, 939, 2581, 7238, 20263, 57337, 162319, 461961, 1317217, 3767035, 10792400, 30983565, 89084845, 256531814, 739658815, 2135234247, 6170505666, 17849457873, 51679366171, 149750711581, 434260829464, 1260198317509, 3659410074933 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..500

FORMULA

a(n) = Sum_{d|n} d*A000081(d).

L.g.f.: Sum_{n>=1} -A000081(n) * log(1-x^n).

L.g.f.: log( G(x)/x ) = Sum_{n>=1} G(x^n)/n where G(x) is the g.f. of A000081, which is the number of rooted trees with n nodes.

a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.4399240125710253040409... . - Vaclav Kotesovec, Oct 30 2014

EXAMPLE

L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 46*x^5/5 + 129*x^6/6 +...

Let G(x) be the g.f. of A000081, then

exp(L(x)) = G(x)/x where G(x) = x*exp( Sum_{n>=1} G(x^n)/n ) begins:

G(x) = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + 286*x^9 + 719*x^10 + 1842*x^11 + 4766*x^12 + 12486*x^13 + 32973*x^14 +...

PROG

(PARI) {a(n)=local(L=vector(n, i, 1)); for(i=1, n, L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, n\m, L[k]*x^(m*k)/k)+x*O(x^n)))))); L[n]}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A000081, A203253.

Sequence in context: A141344 A280756 A029855 * A110014 A026581 A151535

Adjacent sequences:  A209394 A209395 A209396 * A209398 A209399 A209400

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 00:17 EST 2017. Contains 295954 sequences.